Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 159: 106695, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39186906

RESUMO

Cage subsidence after instrumented lumbar spinal fusion surgery remains a significant cause of treatment failure, specifically for posterior or transforaminal lumbar interbody fusion. Recent advancements in computational techniques and additive manufacturing, have enabled the development of patient-specific implants and implant optimization to specific functional targets. This study aimed to introduce a novel full-scale topology optimization formulation that takes the structural response of the adjacent bone structures into account in the optimization process. The formulation includes maximum and minimum principal strain constraints that lower strain concentrations in the adjacent vertebrae. This optimization approach resulted in anatomically and mechanically conforming spinal fusion cages. Subsidence risk was quantified in a commercial finite element solver for off-the-shelf, anatomically conforming and the optimized cages, in two representative patients. We demonstrated that the anatomically and mechanically conforming cages reduced subsidence risk by 91% compared to an off-the-shelf implant with the same footprint for a patient with normal bone quality and 54% for a patient with osteopenia. Prototypes of the optimized cage were additively manufactured and mechanically tested to evaluate the manufacturability and integrity of the design and to validate the finite element model.

2.
Biomater Adv ; 154: 213617, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678088

RESUMO

Despite the recent advances in 3D-printing, it is often difficult to fabricate implants that optimally fit a defect size or shape. There are some approaches to resolve this issue, such as patient-specific implant/scaffold designs based on CT images of the patients, however, this process is labor-intensive and costly. Especially in developing countries, affordable treatment options are required, while still not excluding these patient groups from potential material and manufacturing advances. Here, a selective laser melting (SLM) 3D-printing strategy was used to fabricate a hierarchical, LEGO®-inspired Assemblable Titanium Scaffold (ATS) system, which can be manually assembled in any shape or size with ease. A surgeon can quickly create a scaffold that would fit to the defect right before the implantation during the surgery. Additionally, the direct inclusion of micro- and macroporous structures via 3D-printing, as well as a double acid-etched surface treatment (ST) in the ATS, ensure biocompatibility, sufficient nutrient flow, cell migration and enhanced osteogenesis. Three different structures were designed (non-porous:NP, semi-porous:SP, ultra-porous:UP), 3D-printed with the SLM technique and then surface treated for the ST groups. After analyzing characteristics of the ATS such as printing quality, surface roughness and interconnected porosity, mechanical testing and finite element analysis (FEA) demonstrated that individual and stacked ATS have sufficient mechanical properties to withstand loading in a physiological system. All ATS showed high cell viability, and the SP and UP groups demonstrated enhanced cell proliferation rates compared to the NP group. Furthermore, we also verified that cells were well-attached and spread on the porous structures and successful cell migration between the ATS units was seen in the case of assemblies. The UP and SP groups exhibited higher calcium deposition and RT-qPCR proved higher osteogenic gene expression compared to NP group. Finally, we demonstrate a number of possible medical applications that reveal the potential of the ATS through assembly.


Assuntos
Medicina Regenerativa , Titânio , Humanos , Osteogênese , Próteses e Implantes , Impressão Tridimensional
3.
Adv Mater ; 35(44): e2302008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632210

RESUMO

Advances in additive manufacturing have led to diverse patient-specific implant designs utilizing computed tomography, but this requires intensive work and financial implications. Here, Digital Light Processing is used to fabricate a hive-structured assemblable bespoke scaffold (HIVE). HIVE can be manually assembled in any shape/size with ease, so a surgeon can create a scaffold that will best fit a defect before implantation. Simultaneously, it can have site-specific treatments by working as a carrier filled with microcryogels (MC) incorporating different biological factors in different pockets of HIVE. After characterization, possible site-specific applications are investigated by utilizing HIVE as a versatile carrier with incorporated treatments such as growth factors (GF), bioceramic, or cells. HIVE as a GF-carrier shows a controlled release of bone morphogenetic protein/vascular endothelial growth factor (BMP/VEGF) and induced osteogenesis/angiogenesis from human mesenchymal stem cells (hMSC)/human umbilical vein endothelial cells (HUVECs). Furthermore, as a bioceramic-carrier, HIVE demonstrates enhanced mineralization and osteogenesis, and as a HUVEC carrier, it upregulates both osteogenic and angiogenic gene expression of hMSCs. HIVE with different combinations of MCs yields a distinct local effect and successful cell migration is confirmed within assembled HIVEs. Finally, an in vivo rat subcutaneous implantation demonstrates site-specific osteogenesis and angiogenesis.


Assuntos
Medicina Regenerativa , Alicerces Teciduais , Humanos , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Osteogênese , Células Endoteliais da Veia Umbilical Humana/metabolismo , Impressão Tridimensional , Engenharia Tecidual/métodos , Regeneração Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA