Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746348

RESUMO

Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here we utilize a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated hetero-multimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol (4,5)-bisphosphate (PIP 2 ). We found that higher PIP 2 levels increased homo-multimerization of both EGFR and EphA2, as well as hetero-multimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP 2 can have a substantial effect on the spatial organization of RTKs.

2.
Proc Natl Acad Sci U S A ; 121(14): e2304897121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547061

RESUMO

While the existence and functional role of class C G-protein-coupled receptors (GPCR) dimers is well established, there is still a lack of consensus regarding class A and B GPCR multimerization. This lack of consensus is largely due to the inherent challenges of demonstrating the presence of multimeric receptor complexes in a physiologically relevant cellular context. The C-X-C motif chemokine receptor 4 (CXCR4) is a class A GPCR that is a promising target of anticancer therapy. Here, we investigated the potential of CXCR4 to form multimeric complexes with other GPCRs and characterized the relative size of the complexes in a live-cell environment. Using a bimolecular fluorescence complementation (BiFC) assay, we identified the ß2 adrenergic receptor (ß2AR) as an interaction partner. To investigate the molecular scale details of CXCR4-ß2AR interactions, we used a time-resolved fluorescence spectroscopy method called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS can resolve membrane protein density, diffusion, and multimerization state in live cells at physiological expression levels. We probed CXCR4 and ß2AR homo- and heteromultimerization in model cell lines and found that CXCR4 assembles into multimeric complexes larger than dimers in MDA-MB-231 human breast cancer cells and in HCC4006 human lung cancer cells. We also found that ß2AR associates with CXCR4 multimers in MDA-MB-231 and HCC4006 cells to a higher degree than in COS-7 and CHO cells and in a ligand-dependent manner. These results suggest that CXCR4-ß2AR heteromers are present in human cancer cells and that GPCR multimerization is significantly affected by the plasma membrane environment.


Assuntos
Neoplasias , Receptores Adrenérgicos beta 2 , Receptores CXCR4 , Transdução de Sinais , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Multimerização Proteica
3.
Science ; 382(6674): 1042-1050, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37972196

RESUMO

Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that initiates both ligand-dependent tumor-suppressive and ligand-independent oncogenic signaling. We used time-resolved, live-cell fluorescence spectroscopy to show that the ligand-free EphA2 assembles into multimers driven by two types of intermolecular interactions in the ectodomain. The first type entails extended symmetric interactions required for ligand-induced receptor clustering and tumor-suppressive signaling that inhibits activity of the oncogenic extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein kinases and suppresses cell migration. The second type is an asymmetric interaction between the amino terminus and the membrane proximal domain of the neighboring receptors, which supports oncogenic signaling and promotes migration in vitro and tumor invasiveness in vivo. Our results identify the molecular interactions that drive the formation of the EphA2 multimeric signaling clusters and reveal the pivotal role of EphA2 assembly in dictating its opposing functions in oncogenesis.


Assuntos
Multimerização Proteica , Receptor EphA2 , Proteínas Supressoras de Tumor , Humanos , Ligantes , Invasividade Neoplásica , Fosforilação , Receptor EphA2/química , Receptor EphA2/metabolismo , Transdução de Sinais , Espectrometria de Fluorescência , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
4.
J Biol Chem ; 299(7): 104914, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315787

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) commonly targeted for inhibition by anticancer therapeutics. Current therapeutics target EGFR's kinase domain or extracellular region. However, these types of inhibitors are not specific for tumors over healthy tissue and therefore cause undesirable side effects. Our lab has recently developed a new strategy to regulate RTK activity by designing a peptide that specifically binds to the transmembrane (TM) region of the RTK to allosterically modify kinase activity. These peptides are acidity-responsive, allowing them to preferentially target acidic environments like tumors. We have applied this strategy to EGFR and created the PET1 peptide. We observed that PET1 behaves as a pH-responsive peptide that modulates the configuration of the EGFR TM through a direct interaction. Our data indicated that PET1 inhibits EGFR-mediated cell migration. Finally, we investigated the mechanism of inhibition through molecular dynamics simulations, which showed that PET1 sits between the two EGFR TM helices; this molecular mechanism was additionally supported by AlphaFold-Multimer predictions. We propose that the PET1-induced disruption of native TM interactions disturbs the conformation of the kinase domain in such a way that it inhibits EGFR's ability to send migratory cell signals. This study is a proof-of-concept that acidity-responsive membrane peptide ligands can be generally applied to RTKs. In addition, PET1 constitutes a viable approach to therapeutically target the TM of EGFR.


Assuntos
Regulação Alostérica , Membrana Celular , Receptores ErbB , Peptídeos , Humanos , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , Peptídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Antineoplásicos/farmacologia
5.
Proc Natl Acad Sci U S A ; 119(30): e2206588119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867821

RESUMO

Oncogenic mutations within the epidermal growth factor receptor (EGFR) are found in 15 to 30% of all non-small-cell lung carcinomas. The term exon 19 deletion (ex19del) is collectively used to refer to more than 20 distinct genomic alterations within exon 19 that comprise the most common EGFR mutation subtype in lung cancer. Despite this heterogeneity, clinical treatment decisions are made irrespective of which EGFR ex19del variant is present within the tumor, and there is a paucity of information regarding how individual ex19del variants influence protein structure and function. Herein, we identified allele-specific functional differences among ex19del variants attributable to recurring sequence and structure motifs. We built all-atom structural models of 60 ex19del variants identified in patients and combined molecular dynamics simulations with biochemical and biophysical experiments to analyze three ex19del mutations (E746_A750, E746_S752 > V, and L747_A750 > P). We demonstrate that sequence variation in ex19del alters oncogenic cell growth, dimerization propensity, enzyme kinetics, and tyrosine kinase inhibitor (TKI) sensitivity. We show that in contrast to E746_A750 and E746_S752 > V, the L747_A750 > P variant forms highly active ligand-independent dimers. Enzyme kinetic analysis and TKI inhibition experiments suggest that E746_S752 > V and L747_A750 > P display reduced TKI sensitivity due to decreased adenosine 5'-triphosphate Km. Through these analyses, we propose an expanded framework for interpreting ex19del variants and considerations for therapeutic intervention.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Éxons , Neoplasias Pulmonares , Alelos , Motivos de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ativação Enzimática/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Éxons/genética , Humanos , Cinética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Deleção de Sequência
6.
J Biol Chem ; 297(2): 100965, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270956

RESUMO

Signaling of semaphorin ligands via their plexin-neuropilin receptors is involved in tissue patterning in the developing embryo. These proteins play roles in cell migration and adhesion but are also important in disease etiology, including in cancer angiogenesis and metastasis. While some structures of the soluble domains of these receptors have been determined, the conformations of the full-length receptor complexes are just beginning to be elucidated, especially within the context of the plasma membrane. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy allows direct insight into the formation of protein-protein interactions in the membranes of live cells. Here, we investigated the homodimerization of neuropilin-1 (Nrp1), plexin A2, plexin A4, and plexin D1 using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy. Consistent with previous studies, we found that Nrp1, plexin A2, and plexin A4 are present as dimers in the absence of exogenous ligand. Plexin D1, on the other hand, was monomeric under similar conditions, which had not been previously reported. We also found that plexin A2 and A4 assemble into a heteromeric complex. Stimulation with semaphorin 3A or semaphorin 3C neither disrupts nor enhances the dimerization of the receptors when expressed alone, suggesting that activation involves a conformational change rather than a shift in the monomer-dimer equilibrium. However, upon stimulation with semaphorin 3C, plexin D1 and Nrp1 form a heteromeric complex. This analysis of interactions provides a complementary approach to the existing structural and biochemical data that will aid in the development of new therapeutic strategies to target these receptors in cancer.


Assuntos
Moléculas de Adesão Celular , Proteínas do Tecido Nervoso , Semaforinas , Membrana Celular/metabolismo , Movimento Celular , Humanos , Transdução de Sinais
7.
Nat Commun ; 12(1): 1382, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654076

RESUMO

Mechanistic understanding of oncogenic variants facilitates the development and optimization of treatment strategies. We recently identified in-frame, tandem duplication of EGFR exons 18 - 25, which causes EGFR Kinase Domain Duplication (EGFR-KDD). Here, we characterize the prevalence of ERBB family KDDs across multiple human cancers and evaluate the functional biochemistry of EGFR-KDD as it relates to pathogenesis and potential therapeutic intervention. We provide computational and experimental evidence that EGFR-KDD functions by forming asymmetric EGF-independent intra-molecular and EGF-dependent inter-molecular dimers. Time-resolved fluorescence microscopy and co-immunoprecipitation reveals EGFR-KDD can form ligand-dependent inter-molecular homo- and hetero-dimers/multimers. Furthermore, we show that inhibition of EGFR-KDD activity is maximally achieved by blocking both intra- and inter-molecular dimerization. Collectively, our findings define a previously unrecognized model of EGFR dimerization, providing important insights for the understanding of EGFR activation mechanisms and informing personalized treatment of patients with tumors harboring EGFR-KDD. Finally, we establish ERBB KDDs as recurrent oncogenic events in multiple cancers.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Duplicação Gênica , Terapia de Alvo Molecular , Oncogenes , Sequência de Aminoácidos , Animais , Linhagem Celular , Proliferação de Células , Epitopos/metabolismo , Receptores ErbB/genética , Ligantes , Camundongos , Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade
8.
J Phys Chem B ; 123(49): 10433-10440, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31729230

RESUMO

Model membranes are a valuable tool to investigate the mechanism of interaction between antibiotic compounds and bacterial membranes. However, the development of supported lipid bilayer (SLB) models for Gram-negative and Gram-positive bacteria has been challenging because of the high charge and spontaneous curvature of the lipids that make up these membranes. Here we describe a method for preparing mimetic Gram-negative inner membrane and Gram-positive membrane SLBs, including asymmetric SLBs (asy-SLBs) that contain a fluorescent tracer only in the upper leaflet of the membrane. We quantified the dynamics of the lipids in these membranes with fluorescence correlation spectroscopy (FCS) and found that lipid diffusion is slower in Gram-negative SLBs/asySLBs than in Gram-positive SLBs/asySLBs. Peptide binding to these membranes was also characterized using colistin, a Gram-negative specific antibiotic. Interactions between colistin and membrane lipids phosphatidylethanolamine (PE) or cardiolipin (TOCL) were probed with pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). Overall, our data provide unique insight into the diffusion dynamics of lipids in Gram-negative and Gram-positive membranes as well as a novel platform for investigating the mechanism of interaction between antibiotic peptides and bacterial membrane lipids.


Assuntos
Cardiolipinas/análise , Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Bicamadas Lipídicas/química , Peptídeos/química , Fosfatidiletanolaminas/análise , Sítios de Ligação , Espectrometria de Fluorescência
9.
Elife ; 72018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30222105

RESUMO

Misregulation of the signaling axis formed by the receptor tyrosine kinase (RTK) EphA2 and its ligand, ephrinA1, causes aberrant cell-cell contacts that contribute to metastasis. Solid tumors are characterized by an acidic extracellular medium. We intend to take advantage of this tumor feature to design new molecules that specifically target tumors. We created a novel pH-dependent transmembrane peptide, TYPE7, by altering the sequence of the transmembrane domain of EphA2. TYPE7 is highly soluble and interacts with the surface of lipid membranes at neutral pH, while acidity triggers transmembrane insertion. TYPE7 binds to endogenous EphA2 and reduces Akt phosphorylation and cell migration as effectively as ephrinA1. Interestingly, we found large differences in juxtamembrane tyrosine phosphorylation and the extent of EphA2 clustering when comparing TYPE7 with activation by ephrinA1. This work shows that it is possible to design new pH-triggered membrane peptides to activate RTK and gain insights on its activation mechanism.


Assuntos
Efrina-A1/genética , Efrina-A2/genética , Neoplasias/genética , Peptídeos/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Efrina-A1/química , Efrina-A2/química , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Neoplasias/tratamento farmacológico , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Fosforilação , Domínios Proteicos/genética , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Receptor EphA2
10.
Anal Chem ; 89(10): 5221-5229, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28418634

RESUMO

A novel plasmonic nanoledge device was presented to explore the geometry-induced trapping of nanoscale biomolecules and examine a generation of surface plasmon resonance (SPR) for plasmonic sensing. To design an optimal plasmonic device, a semianalytical model was implemented for a quantitative analysis of SPR under plane-wave illumination and a finite-difference time-domain (FDTD) simulation was used to study the optical transmission and refractive index (RI) sensitivity. In addition, total internal reflection fluorescence (TIRF) imaging was used to visualize the migration of fluorescently labeled bovine serum albumin (BSA) into the nanoslits; and fluorescence correlation spectroscopy (FCS) was further used to investigate the diffusion of BSA in the nanoslits. Transmission SPR measurements of free prostate specific antigen (f-PSA), which is similar in size to BSA, were performed to validate the trapping of the molecules via specific binding reactions in the nanoledge cavities. The present study may facilitate further development of single nanomolecule detection and new nanomicrofluidic arrays for effective detection of multiple biomarkers in clinical biofluids.


Assuntos
Nanoestruturas/química , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície/métodos , Animais , Anticorpos Imobilizados/imunologia , Biomarcadores/análise , Bovinos , Corantes Fluorescentes/química , Ouro/química , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/imunologia
11.
Sci Rep ; 7: 45084, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338017

RESUMO

Among the 20 subfamilies of protein receptor tyrosine kinases (RTKs), Eph receptors are unique in possessing a sterile alpha motif (SAM domain) at their C-terminal ends. However, the functions of SAM domains in Eph receptors remain elusive. Here we report on a combined cell biology and quantitative fluorescence study to investigate the role of the SAM domain in EphA2 function. We observed elevated tyrosine autophosphorylation levels upon deletion of the EphA2 SAM domain (EphA2ΔS) in DU145 and PC3 prostate cancer cells and a skin tumor cell line derived from EphA1/A2 knockout mice. These results suggest that SAM domain deletion induced constitutive activation of EphA2 kinase activity. In order to explain these effects, we applied fluorescence correlation spectroscopy to investigate the lateral molecular organization of EphA2. Our results indicate that SAM domain deletion (EphA2ΔS-GFP) increases oligomerization compared to the full length receptor (EphA2FL-GFP). Stimulation with ephrinA1, a ligand for EphA2, induced further oligomerization and activation of EphA2FL-GFP. The SAM domain deletion mutant, EphA2ΔS-GFP, also underwent further oligomerization upon ephrinA1 stimulation, but the oligomers were larger than those observed for EphA2FL-GFP. Based on these results, we conclude that the EphA2 SAM domain inhibits kinase activity by reducing receptor oligomerization.


Assuntos
Efrina-A2/química , Motivo Estéril alfa , Animais , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Efrina-A1/química , Efrina-A1/metabolismo , Efrina-A2/metabolismo , Humanos , Camundongos , Fosforilação , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Receptor EphA2
12.
Elife ; 52016 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-27017828

RESUMO

The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if this is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.


Assuntos
Receptores ErbB/metabolismo , Multimerização Proteica , Regulação Alostérica , Animais , Análise Mutacional de DNA , Receptores ErbB/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oócitos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Imagem Individual de Molécula , Xenopus
13.
Langmuir ; 32(7): 1732-41, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26829708

RESUMO

Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.


Assuntos
Bicamadas Lipídicas/química , Fosfatos de Fosfatidilinositol/química , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Bicamadas Lipídicas/metabolismo , Concentração Osmolar , Fosfatos de Fosfatidilinositol/metabolismo , Polimerização , Polivinil/química
14.
J Phys Chem B ; 120(5): 867-76, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26771210

RESUMO

The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell-cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10-80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Taken together, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.


Assuntos
Ácido Mirístico/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Membrana Celular/metabolismo
15.
Cell ; 152(3): 543-56, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374349

RESUMO

How the epidermal growth factor receptor (EGFR) activates is incompletely understood. The intracellular portion of the receptor is intrinsically active in solution, and to study its regulation, we measured autophosphorylation as a function of EGFR surface density in cells. Without EGF, intact EGFR escapes inhibition only at high surface densities. Although the transmembrane helix and the intracellular module together suffice for constitutive activity even at low densities, the intracellular module is inactivated when tethered on its own to the plasma membrane, and fluorescence cross-correlation shows that it fails to dimerize. NMR and functional data indicate that activation requires an N-terminal interaction between the transmembrane helices, which promotes an antiparallel interaction between juxtamembrane segments and release of inhibition by the membrane. We conclude that EGF binding removes steric constraints in the extracellular module, promoting activation through N-terminal association of the transmembrane helices.


Assuntos
Membrana Celular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/química , Transdução de Sinais , Animais , Células COS , Membrana Celular/química , Chlorocebus aethiops , Dimerização , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares
16.
J Am Chem Soc ; 134(26): 10833-42, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22631607

RESUMO

This study examines the dynamic co-localization of lipid-anchored fluorescent proteins in living cells using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) and fluorescence lifetime analysis. Specifically, we look at the pairwise co-localization of anchors from lymphocyte cell kinase (LCK: myristoyl, palmitoyl, palmitoyl), RhoA (geranylgeranyl), and K-Ras (farnesyl) proteins in different cell types. In Jurkat cells, a density-dependent increase in cross-correlation among RhoA anchors is observed, while LCK anchors exhibit a more moderate increase and broader distribution. No correlation was detected among K-Ras anchors or between any of the different anchor types studied. Fluorescence lifetime data reveal no significant Förster resonance energy transfer in any of the data. In COS 7 cells, minimal correlation was detected among LCK or RhoA anchors. Taken together, these observations suggest that some lipid anchors take part in anchor-specific co-clustering with other existing clusters of native proteins and lipids in the membrane. Importantly, these observations do not support a simple interpretation of lipid anchor-mediated organization driven by partitioning based on binary lipid phase separation.


Assuntos
Membrana Celular/metabolismo , Proteínas Ligadas a Lipídeos/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Células COS , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Humanos , Células Jurkat , Bicamadas Lipídicas/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Espectrometria de Fluorescência/métodos
17.
J Phys Chem B ; 114(34): 10913-24, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20690697

RESUMO

Isotope-edited two-dimensional infrared spectroscopy has been used to characterize the conformational heterogeneity of the beta-hairpin peptide TrpZip2 (TZ2) across its thermal unfolding transition. Four isotopologues were synthesized to probe hydrogen bonding and solvent exposure of the beta-turn (K8), the N-terminus (S1), and the midstrand region (T10 and T3T10). Isotope-shifts, 2D lineshapes, and other spectral changes to the amide I 2D IR spectra of labeled TZ2 isotopologues were observed as a function of temperature. Data were interpreted on the basis of structure-based spectroscopic modeling of conformers obtained from extensive molecular dynamics simulations. The K8 spectra reveal two unique turn geometries, the type I' beta-turn observed in the NMR structure, and a less populated disordered or bulged loop. The data indicate that structures at low temperature resemble the folded NMR structure with typical cross-strand hydrogen bonds, although with a subpopulation of misformed turns. As the temperature is raised from 25 to 85 degrees C, the fraction of population with a type I' turn increases, but the termini also fray. Hydrogen bonding contacts in the midstrand region remain at all temperatures although with increasing thermal disorder. Our data show no evidence of an extended chain or random coil state for the TZ2 peptide at any temperature. The methods demonstrated here offer an approach to characterizing conformational variation within the folded or unfolded states of proteins and peptides.


Assuntos
Peptídeos/química , Ligação de Hidrogênio , Marcação por Isótopo , Simulação de Dinâmica Molecular , Transição de Fase , Desnaturação Proteica , Estrutura Secundária de Proteína , Solventes/química , Espectrofotometria Infravermelho , Temperatura
19.
J Chem Phys ; 126(4): 045109, 2007 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-17286519

RESUMO

In this report, spectral simulations and isotope labeling are used to describe the two-dimensional IR spectroscopy of beta-hairpin peptides in the amide I spectral region. 2D IR spectra of Gramicidin S, PG12, Trpzip2 (TZ2), and TZ2-T3(*)T10(*), a dual (13)C(') isotope label, are qualitatively described by a model based on the widely used local mode amide I Hamiltonian. The authors' model includes methods for calculating site energies for individual amide oscillators on the basis of hydrogen bonding, nearest neighbor and long-range coupling between sites, and disorder in the site energy. The dependence of the spectral features on the peptide backbone structure is described using disorder-averaged eigenstates, which are visualized by mapping back onto the local amide I sites. beta-hairpin IR spectra are dominated by delocalized vibrations that vary by the phase of adjacent oscillators parallel and perpendicular to the strands. The dominant nu(perpendicular) band is sensitive to the length of the hairpin and the amount of twisting in the backbone structure, while the nu(parallel) band is composed of several low symmetry modes that delocalize along the strands. The spectra of TZ2-T3(*)T10(*) are used to compare coupling models, from which we conclude that transition charge coupling is superior to transition dipole coupling for amide groups directly hydrogen bound across the beta strands. The 2D IR spectra of TZ2-T3(*)T10(*) are used to resolve the redshifted amide I band and extract the site energy of the labeled groups. This allows the authors to compare several methods for calculating the site energies used in excitonic treatments of the amide I band. Gramicidin S is studied in dimethyl sulfoxide to test the role of solvent on the spectral simulations.


Assuntos
Amidas/química , Modelos Químicos , Modelos Moleculares , Peptídeos/química , Espectrofotometria Infravermelho/métodos , Simulação por Computador , Cinética , Conformação Proteica , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA