Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
medRxiv ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39228737

RESUMO

Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. Genetic lesions that confer a fitness advantage, such as point mutations or mosaic chromosomal alterations (mCAs) in genes associated with hematologic malignancy, are frequent mediators of CH. However, recent analyses of both single cell-derived colonies of hematopoietic cells and population sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. To characterize CH without known driver genetic lesions, we used 51,399 deeply sequenced whole genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-LPMneg. We quantified CH by estimating the total mutation burden. Because estimating somatic mutation burden without a paired-tissue sample is challenging, we developed a novel statistical method, the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and epigenomic data sources to distinguish artifactual signals from true somatic mutations. We performed a genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. After fine-mapping and variant-to-gene analyses, we identified seven genes associated with CH-LPMneg (TCL1A, TERT, SMC4, NRIP1, PRDM16, MSRA, SCARB1), and one locus associated with a sex-associated mutation pathway (SRGAP2C). We performed a secondary analysis excluding individuals with mCAs, finding that the genetic architecture was largely unaffected by their inclusion. Functional analyses of SMC4 and NRIP1 implicated altered HSC self-renewal and proliferation as the primary mediator of mutation burden in blood. We then performed comprehensive multi-tissue transcriptomic analyses, finding that the expression levels of 404 genes are associated with GEM. Finally, we performed phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased white blood cell count and increased risk for incident peripheral artery disease, but is not significantly associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying mutation burden from WGS without a paired-tissue sample and use GEM to discover the genetic, genomic, and phenotypic correlates of CH-LPMneg.

2.
Nat Aging ; 4(8): 1043-1052, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834882

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.


Assuntos
Hematopoiese Clonal , Epigênese Genética , Proteômica , Hematopoiese Clonal/genética , Humanos , Metilação de DNA , Feminino , Masculino , Células-Tronco Hematopoéticas/metabolismo , Pessoa de Meia-Idade , Proteoma/metabolismo , Proteoma/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Idoso
3.
Front Genet ; 14: 1235337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028628

RESUMO

Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

4.
Nat Genet ; 55(10): 1640-1650, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709864

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estudo de Associação Genômica Ampla , Cirrose Hepática/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Fosfolipases/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
5.
Cancer Epidemiol Biomarkers Prev ; 32(10): 1470-1473, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466697

RESUMO

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related somatic mutation associated with incident hematologic cancer. Environmental stressors which, like air pollution, generate oxidative stress at the cellular level, may induce somatic mutations and some mutations may provide a selection advantage for persistence and expansion of specific clones. METHODS: We used data from the Multi-Ethnic Study of Atherosclerosis (MESA) N = 4,379 and the Women's Health Initiative (WHI) N = 7,701 to estimate cross-sectional associations between annual average air pollution concentrations at participant address the year before blood draw using validated spatiotemporal models. We used covariate-adjusted logistic regression to estimate risk of CHIP per interquartile range increases in particulate matter (PM2.5; 4 µg/m3) and nitrogen dioxide (NO2; 10 ppb) as ORs (95% confidence intervals). RESULTS: Prevalence of CHIP at blood draw (variant allele fraction > 2%) was 4.4% and 8.7% in MESA and WHI, respectively. The most common CHIP driver mutation was in DNMT3A. Neither pollutant was associated with CHIP: ORMESA PM2.5 = 1.00 (0.68-1.45), ORMESA NO2 = 1.05 (0.69-1.61), ORWHI PM2.5 = 0.97 (0.86-1.09), ORWHI NO2 = 0.98 (0.88-1.10); or with DNMT3A-driven CHIP. CONCLUSIONS: We did not find evidence that air pollution contributes to CHIP prevalence in two large observational cohorts. IMPACT: This is the first study to estimate associations between air pollution and CHIP.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aterosclerose , Poluentes Ambientais , Humanos , Feminino , Poluentes Atmosféricos/efeitos adversos , Dióxido de Nitrogênio/efeitos adversos , Hematopoiese Clonal , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos
6.
Nat Commun ; 13(1): 7592, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481753

RESUMO

Genome-wide association studies have identified thousands of single nucleotide variants and small indels that contribute to variation in hematologic traits. While structural variants are known to cause rare blood or hematopoietic disorders, the genome-wide contribution of structural variants to quantitative blood cell trait variation is unknown. Here we utilized whole genome sequencing data in ancestrally diverse participants of the NHLBI Trans Omics for Precision Medicine program (N = 50,675) to detect structural variants associated with hematologic traits. Using single variant tests, we assessed the association of common and rare structural variants with red cell-, white cell-, and platelet-related quantitative traits and observed 21 independent signals (12 common and 9 rare) reaching genome-wide significance. The majority of these associations (N = 18) replicated in independent datasets. In genome-editing experiments, we provide evidence that a deletion associated with lower monocyte counts leads to disruption of an S1PR3 monocyte enhancer and decreased S1PR3 expression.


Assuntos
Células Sanguíneas , Estudo de Associação Genômica Ampla , Humanos , Sequenciamento Completo do Genoma
7.
Commun Biol ; 5(1): 806, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953715

RESUMO

Genome-wide association studies (GWAS) have made impactful discoveries for complex diseases, often by amassing very large sample sizes. Yet, GWAS of many diseases remain underpowered, especially for non-European ancestries. One cost-effective approach to increase sample size is to combine existing cohorts, which may have limited sample size or be case-only, with public controls, but this approach is limited by the need for a large overlap in variants across genotyping arrays and the scarcity of non-European controls. We developed and validated a protocol, Genotyping Array-WGS Merge (GAWMerge), for combining genotypes from arrays and whole-genome sequencing, ensuring complete variant overlap, and allowing for diverse samples like Trans-Omics for Precision Medicine to be used. Our protocol involves phasing, imputation, and filtering. We illustrated its ability to control technology driven artifacts and type-I error, as well as recover known disease-associated signals across technologies, independent datasets, and ancestries in smoking-related cohorts. GAWMerge enables genetic studies to leverage existing cohorts to validly increase sample size and enhance discovery for understudied traits and ancestries.


Assuntos
Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Genótipo , Fenótipo , Tamanho da Amostra , Sequenciamento Completo do Genoma/métodos
8.
HGG Adv ; 3(3): 100117, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35647563

RESUMO

CFTR F508del (c.1521_1523delCTT, p.Phe508delPhe) is the most common pathogenic allele underlying cystic fibrosis (CF), and its frequency varies in a geographic cline across Europe. We hypothesized that genetic variation associated with this cline is overrepresented in a large cohort (N > 5,000) of persons with CF who underwent whole-genome sequencing and that this pattern could result in spurious associations between variants correlated with both the F508del genotype and CF-related outcomes. Using principal-component (PC) analyses, we showed that variation in the CFTR region disproportionately contributes to a PC explaining a relatively high proportion of genetic variance. Variation near CFTR was correlated with population structure among persons with CF, and this correlation was driven by a subset of the sample inferred to have European ancestry. We performed genome-wide association studies comparing persons with CF with one versus two copies of the F508del allele; this allowed us to identify genetic variation associated with the F508del allele and to determine that standard PC-adjustment strategies eliminated the significant association signals. Our results suggest that PC adjustment can adequately prevent spurious associations between genetic variants and CF-related traits and are therefore effective tools to control for population structure even when population structure is confounded with disease severity and a common pathogenic variant.

9.
Cell Genom ; 2(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35530816

RESUMO

Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.

10.
Sci Adv ; 8(14): eabl6579, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385311

RESUMO

Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.

11.
Sci Rep ; 11(1): 19365, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588469

RESUMO

Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were significantly associated with FEV1. This study investigates the utility of assessing gene-by-smoking interactions and underscores their effects on potential pulmonary function.


Assuntos
Fumar Cigarros/epidemiologia , Volume Expiratório Forçado/genética , Interação Gene-Ambiente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fumar Cigarros/efeitos adversos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Conjuntos de Dados como Assunto , Éxons/genética , Estudos de Viabilidade , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pulmão/fisiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Fatores de Risco
12.
Muscle Nerve ; 63(3): 285-293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098165

RESUMO

Diabetic peripheral neuropathy and metabolic syndrome (MetS) are both global health challenges with well-established diagnostic criteria and significant impacts on quality of life. Clinical observations, epidemiologic evidence, and animal models of disease have strongly suggested MetS is associated with an elevated risk for cryptogenic sensory peripheral neuropathy (CSPN). MetS neuropathy preferentially affects small unmyelinated axons early in its course, and it may also affect autonomic and large fibers. CSPN risk is linked to MetS and several of its components including obesity, dyslipidemia, and prediabetes. MetS also increases neuropathy risk in patients with established type 1 and type 2 diabetes. In this review we present animal data regarding the role of inflammation and dyslipidemia in MetS neuropathy pathogenesis. Several studies suggest exercise-based lifestyle modification is a promising treatment approach for MetS neuropathy.


Assuntos
Neuropatias Diabéticas/diagnóstico , Síndrome Metabólica/diagnóstico , Doenças do Sistema Nervoso Periférico/diagnóstico , Cirurgia Bariátrica , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/terapia , Dietoterapia , Progressão da Doença , Dislipidemias/epidemiologia , Dislipidemias/metabolismo , Dislipidemias/terapia , Exercício Físico , Humanos , Hipoglicemiantes/uso terapêutico , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/terapia , Doenças do Sistema Nervoso Periférico/epidemiologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/terapia , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/metabolismo , Fatores de Risco , Neuropatia de Pequenas Fibras/diagnóstico , Neuropatia de Pequenas Fibras/epidemiologia , Neuropatia de Pequenas Fibras/fisiopatologia , Neuropatia de Pequenas Fibras/terapia , Topiramato/uso terapêutico
13.
J Clin Endocrinol Metab ; 106(2): 372-387, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33231259

RESUMO

CONTEXT: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation. OBJECTIVE: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease. DESIGN: Genetics of Obesity-associated Liver Disease Consortium. SETTING: Population-based. MAIN OUTCOME: Computed tomography measured liver attenuation. RESULTS: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate. CONCLUSIONS: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.


Assuntos
Doença de Depósito de Glicogênio/etiologia , Glicogênio Hepático/metabolismo , Síndrome Metabólica/etiologia , Infarto do Miocárdio/prevenção & controle , Polimorfismo de Nucleotídeo Único , Proteína Fosfatase 1/genética , Adulto , Idoso , Biomarcadores/análise , Feminino , Seguimentos , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio/patologia , Humanos , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Prognóstico , Estudos Prospectivos
14.
PLoS One ; 15(5): e0230815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379818

RESUMO

Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.


Assuntos
Glicemia/análise , Fumar Cigarros/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Jejum/sangue , Genótipo , Adulto , Idoso , População Negra/genética , Fumar Cigarros/etnologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etnologia , Estudos de Viabilidade , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco , População Branca/genética
15.
Hum Mol Genet ; 28(15): 2615-2633, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127295

RESUMO

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.


Assuntos
Pressão Arterial/genética , Interação Gene-Ambiente , Hipertensão/genética , Polimorfismo Genético , Grupos Raciais/genética , Fumar/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antiporters/genética , Pressão Sanguínea/genética , Caspase 9/genética , Etnicidade/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/etiologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Receptores de Vasopressinas/genética , Transportadores de Sulfato/genética , Proteínas Supressoras de Tumor/genética , Adulto Jovem
16.
Nat Genet ; 51(4): 636-648, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926973

RESUMO

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.


Assuntos
Lipídeos/sangue , Lipídeos/genética , Fumar/sangue , Fumar/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Estilo de Vida , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Neurology ; 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651383

RESUMO

OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p [BI] = 9.38 × 10-25; p [SSBI] = 5.23 × 10-14 for hypertension), smoking (p [BI] = 4.4 × 10-10; p [SSBI] = 1.2 × 10-4), diabetes (p [BI] = 1.7 × 10-8; p [SSBI] = 2.8 × 10-3), previous cardiovascular disease (p [BI] = 1.0 × 10-18; p [SSBI] = 2.3 × 10-7), stroke (p [BI] = 3.9 × 10-69; p [SSBI] = 3.2 × 10-24), and MRI-defined white matter hyperintensity burden (p [BI] = 1.43 × 10-157; p [SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy. CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.

18.
Am J Epidemiol ; 188(6): 1033-1054, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698716

RESUMO

A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.


Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Lipídeos/sangue , Adolescente , Adulto , Idoso , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Fenótipo , Grupos Raciais , Triglicerídeos/sangue , Fator B de Crescimento do Endotélio Vascular , Adulto Jovem
19.
Am J Respir Crit Care Med ; 199(5): 631-642, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199657

RESUMO

RATIONALE: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. OBJECTIVE: To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. METHODS: Associations of n-3 PUFA biomarkers (α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N = 16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N = 11,962) and replicated in one cohort (N = 1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNP associations and their interactions with n-3 PUFAs. RESULTS: DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P2df = 9.4 × 10-9 across discovery and replication cohorts). The rs11693320-A allele (frequency, ∼80%) was associated with lower FVC (PSNP = 2.1 × 10-9; ßSNP = -161.0 ml), and the association was attenuated by higher DHA levels (PSNP×DHA interaction = 2.1 × 10-7; ßSNP×DHA interaction = 36.2 ml). CONCLUSIONS: We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Ácidos Graxos Ômega-3/sangue , Fenômenos Fisiológicos Respiratórios/genética , Idoso , Biomarcadores/sangue , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Ácidos Graxos Insaturados/sangue , Feminino , Volume Expiratório Forçado/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores Sexuais , Fumar/efeitos adversos , Capacidade Vital/genética , Ácido alfa-Linolênico/sangue
20.
Br J Nutr ; 120(10): 1159-1170, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30205856

RESUMO

The role that vitamin D plays in pulmonary function remains uncertain. Epidemiological studies reported mixed findings for serum 25-hydroxyvitamin D (25(OH)D)-pulmonary function association. We conducted the largest cross-sectional meta-analysis of the 25(OH)D-pulmonary function association to date, based on nine European ancestry (EA) cohorts (n 22 838) and five African ancestry (AA) cohorts (n 4290) in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Data were analysed using linear models by cohort and ancestry. Effect modification by smoking status (current/former/never) was tested. Results were combined using fixed-effects meta-analysis. Mean serum 25(OH)D was 68 (sd 29) nmol/l for EA and 49 (sd 21) nmol/l for AA. For each 1 nmol/l higher 25(OH)D, forced expiratory volume in the 1st second (FEV1) was higher by 1·1 ml in EA (95 % CI 0·9, 1·3; P<0·0001) and 1·8 ml (95 % CI 1·1, 2·5; P<0·0001) in AA (P race difference=0·06), and forced vital capacity (FVC) was higher by 1·3 ml in EA (95 % CI 1·0, 1·6; P<0·0001) and 1·5 ml (95 % CI 0·8, 2·3; P=0·0001) in AA (P race difference=0·56). Among EA, the 25(OH)D-FVC association was stronger in smokers: per 1 nmol/l higher 25(OH)D, FVC was higher by 1·7 ml (95 % CI 1·1, 2·3) for current smokers and 1·7 ml (95 % CI 1·2, 2·1) for former smokers, compared with 0·8 ml (95 % CI 0·4, 1·2) for never smokers. In summary, the 25(OH)D associations with FEV1 and FVC were positive in both ancestries. In EA, a stronger association was observed for smokers compared with never smokers, which supports the importance of vitamin D in vulnerable populations.


Assuntos
Envelhecimento , Cardiopatias/genética , Coração/fisiologia , Pneumopatias/genética , Pulmão/fisiologia , Testes de Função Respiratória , Vitamina D/sangue , Adulto , Idoso , População Negra , Estudos Transversais , Feminino , Volume Expiratório Forçado , Genoma Humano , Cardiopatias/prevenção & controle , Humanos , Pneumopatias/prevenção & controle , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Estudos Prospectivos , Análise de Regressão , Fumar , Capacidade Vital , Vitamina D/análogos & derivados , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA