Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Aging Neurosci ; 13: 754956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720999

RESUMO

Mutations in leucine-rich repeat kinase 2 gene (LRRK2) are the most frequent genetic factors contributing to Parkinson's disease (PD). G2385R-LRRK2 increases the risk for PD susceptibility in the Chinese population. However, the pathological role of G2385R-LRRK2 is not clear. In this study, we investigate the roles of G2385R-LRRK2 in neurodegeneration underlying PD pathogenesis using cell biology and pharmacology approaches. We demonstrated that expression of G2385R-LRRK2-induced neurotoxicity in human neuroblastoma SH-SY5Y and mouse primary neurons. G2385R-LRRK2 increased mitochondrial ROS, activates caspase-3/7, and increased PARP cleavage, resulting in neurotoxicity. Treatment with curcumin (an antioxidant) significantly protected against G2385R-LRRK2-induced neurodegeneration by reducing mitochondrial ROS, caspase-3/7 activation, and PARP cleavage. We also found that the cellular environmental stressor, H2O2 significantly promotes both WT-LRRK2- and G2385R-LRRK2-induced neurotoxicity by increasing mitochondrial ROS, caspase-3/7 activation, and PARP cleavage, while curcumin attenuated this combined neurotoxicity. These findings not only provide a novel understanding of G2385R roles in neurodegeneration and environment interaction but also provide a pharmacological approach for intervention for G2385R-LRRK2-linked PD.

2.
PLoS Pathog ; 17(7): e1009753, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260666

RESUMO

To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical model and virtual patient cohort. Our results suggest that virtual patients with low production rates of infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared to those with early and robust IFN responses. In these in silico patients, the maximum concentration of IL-6 was also a major predictor of CD8+ T cell depletion. Our analyses predicted that individuals with severe COVID-19 also have accelerated monocyte-to-macrophage differentiation mediated by increased IL-6 and reduced type I IFN signalling. Together, these findings suggest biomarkers driving the development of severe COVID-19 and support early interventions aimed at reducing inflammation.


Assuntos
COVID-19/imunologia , Modelos Imunológicos , SARS-CoV-2 , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/imunologia , COVID-19/virologia , Estudos de Coortes , Biologia Computacional , Simulação por Computador , Suscetibilidade a Doenças/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata , Terapia de Imunossupressão , Interferons/metabolismo , Interleucina-6/metabolismo , Macrófagos/imunologia , Pandemias , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Interface Usuário-Computador
3.
Lancet Infect Dis ; 20(8): 964-975, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275867

RESUMO

BACKGROUND: (+)-SJ000557733 (SJ733) is a novel, orally bioavailable inhibitor of Plasmodium falciparum ATP4. In this first-in-human and induced blood-stage malaria phase 1a/b trial, we investigated the safety, tolerability, pharmacokinetics, and antimalarial activity of SJ733 in humans. METHODS: The phase 1a was a single-centre, dose-escalation, first-in-human study of SJ733 allowing modifications to dose increments and dose-cohort size on the basis of safety and pharmacokinetic results. The phase 1a took place at St Jude Children's Research Hospital and at the University of Tennessee Clinical Research Center (Memphis, TN, USA). Enrolment in more than one non-consecutive dose cohort was allowed with at least 14 days required between doses. Participants were fasted in seven dose cohorts and fed in one 600 mg dose cohort. Single ascending doses of SJ733 (75, 150, 300, 600, 900, or 1200 mg) were administered to participants, who were followed up for 14 days after SJ733 dosing. Phase 1a primary endpoints were safety, tolerability, and pharmacokinetics of SJ733, and identification of an SJ733 dose to test in the induced blood-stage malaria model. The phase 1b was a single-centre, open-label, volunteer infection study using the induced blood-stage malaria model in which fasted participants were intravenously infected with blood-stage P falciparum and subsequently treated with a single dose of SJ733. Phase 1b took place at Q-Pharm (Herston, QLD, Australia) and was initiated only after phase 1a showed that exposure exceeding the threshold minimum exposure could be safely achieved in humans. Participants were inoculated on day 0 with P falciparum-infected human erythrocytes (around 2800 parasites in the 150 mg dose cohort and around 2300 parasites in the 600 mg dose cohort), and parasitaemia was monitored before malaria inoculation, after inoculation, immediately before SJ733 dosing, and then post-dose. Participants were treated with SJ733 within 24 h of reaching 5000 parasites per mL or at a clinical score higher than 6. Phase 1b primary endpoints were calculation of a parasite reduction ratio (PRR48) and parasite clearance half-life, and safety and tolerability of SJ733 (incidence, severity, and drug-relatedness of adverse events). In both phases of the trial, SJ733 hydrochloride salt was formulated as a powder blend in capsules containing 75 mg or 300 mg for oral administration. Healthy men and women (of non-childbearing potential) aged 18-55 years were eligible for both studies. Both studies are registered with ClinicalTrials.gov (NCT02661373 for the phase 1a and NCT02867059 for the phase 1b). FINDINGS: In the phase 1a, 23 healthy participants were enrolled and received one to three non-consecutive doses of SJ733 between March 14 and Dec 7, 2016. SJ733 was safe and well tolerated at all doses and in fasted and fed conditions. 119 adverse events were recorded: 54 (45%) were unrelated, 63 (53%) unlikely to be related, and two (2%) possibly related to SJ733. In the phase 1b, 17 malaria-naive, healthy participants were enrolled. Seven participants in the 150 mg dose cohort were inoculated and dosed with SJ733. Eight participants in the 600 mg dose cohort were inoculated, but two participants could not be dosed with SJ733. Two additional participants were subsequently inoculated and dosed with SJ733. SJ733 exposure increased proportional to the dose through to the 600 mg dose, then was saturable at higher doses. Fasted participants receiving 600 mg exceeded the target area under the concentration curve extrapolated to infinity (AUC0-∞) of 13 000 µg × h/L (median AUC0-∞ 24 283 [IQR 16 135-31 311] µg × h/L, median terminal half-life 17·4 h [IQR 16·1-24·0], and median timepoint at which peak plasma concentration is reached 1·0 h [0·6-1·3]), and this dose was tested in the phase 1b. All 15 participants dosed with SJ733 had at least one adverse event. Of the 172 adverse events recorded, 128 (74%) were mild. The only adverse event attributed to SJ733 was mild bilateral foot paraesthesia that lasted 3·75 h and resolved spontaneously. The most common adverse events were related to malaria. Based on parasite clearance half-life, the derived log10PRR48 and corresponding parasite clearance half-lives were 2·2 (95% CI 2·0-2·5) and 6·47 h (95% CI 5·88-7·18) for 150 mg, and 4·1 (3·7-4·4) and 3·56 h (3·29-3·88) for 600 mg. INTERPRETATION: The favourable pharmacokinetic, tolerability, and safety profile of SJ733, and rapid antiparasitic effect support its development as a fast-acting component of combination antimalarial therapy. FUNDING: Global Health Innovative Technology Fund, Medicines for Malaria Venture, and the American Lebanese Syrian Associated Charities.


Assuntos
Antimaláricos/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Isoquinolinas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Inibidores da Bomba de Prótons/uso terapêutico , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Estudos de Casos e Controles , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/efeitos adversos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Humanos , Isoquinolinas/administração & dosagem , Isoquinolinas/efeitos adversos , Isoquinolinas/farmacocinética , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Inibidores da Bomba de Prótons/administração & dosagem , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/farmacocinética , Resultado do Tratamento , Adulto Jovem
4.
Cell Rep ; 31(1): 107492, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268090

RESUMO

Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.


Assuntos
Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Quinase I-kappa B/fisiologia , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/imunologia
5.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463976

RESUMO

We previously generated STING N153S knock-in mice that have a human disease-associated gain-of-function mutation in STING. Patients with this mutation (STING N154S in humans) develop STING-associated vasculopathy with onset in infancy (SAVI), a severe pediatric autoinflammatory disease characterized by pulmonary fibrosis. Since this mutation promotes the upregulation of antiviral type I interferon-stimulated genes (ISGs), we hypothesized that STING N153S knock-in mice may develop more severe autoinflammatory disease in response to a virus challenge. To test this hypothesis, we infected heterozygous STING N153S mice with murine gammaherpesvirus 68 (γHV68). STING N153S mice were highly vulnerable to infection and developed pulmonary fibrosis after infection. In addition to impairing CD8+ T cell responses and humoral immunity, STING N153S also promoted the replication of γHV68 in cultured macrophages. In further support of a combined innate and adaptive immunodeficiency, γHV68 infection was more severe in Rag1-/- STING N153S mice than in Rag1-/- littermate mice, which completely lack adaptive immunity. Thus, a gain-of-function STING mutation creates a combined innate and adaptive immunodeficiency that leads to virus-induced pulmonary fibrosis.IMPORTANCE A variety of human rheumatologic disease-causing mutations have recently been identified. Some of these mutations are found in viral nucleic acid-sensing proteins, but whether viruses can influence the onset or progression of these human diseases is less well understood. One such autoinflammatory disease, called STING-associated vasculopathy with onset in infancy (SAVI), affects children and leads to severe lung disease. We generated mice with a SAVI-associated STING mutation and infected them with γHV68, a common DNA virus that is related to human Epstein-Barr virus. Mice with the human disease-causing STING mutation were more vulnerable to infection than wild-type littermate control animals. Furthermore, the STING mutant mice developed lung fibrosis similar to that of patients with SAVI. These findings reveal that a human STING mutation creates severe immunodeficiency, leading to virus-induced lung disease in mice.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Fibrose Pulmonar/genética , Imunidade Adaptativa/genética , Animais , Mutação com Ganho de Função/genética , Gammaherpesvirinae/metabolismo , Gammaherpesvirinae/fisiologia , Síndromes de Imunodeficiência , Inflamação/genética , Pulmão/virologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
6.
PLoS Pathog ; 14(1): e1006830, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304101

RESUMO

The lentiviral protein Viral Infectivity Factor (Vif) counteracts the antiviral effects of host APOBEC3 (A3) proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs) to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.


Assuntos
Antivirais/farmacologia , Citosina Desaminase/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/imunologia , Desaminases APOBEC , Antivirais/química , Proteínas Culina/química , Proteínas Culina/metabolismo , Citidina Desaminase , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Ubiquitina/metabolismo , Ubiquitinação , Montagem de Vírus , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
7.
Arch Suicide Res ; 22(1): 118-127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28281893

RESUMO

The aim of this article is to describe the implementation of a 2-question suicide screening tool in a pediatric urgent care center to identify patients at risk of suicide. Adolescents presenting during a 12-month period completed the screening tool. Positive response to either question triggered further social work evaluation, including a Columbia-Suicide Severity Rating Scale (C-SSRS). Of 4,786 patients screened, 95 (2%) responded positively. Of these, 75 (79%) also had a positive C-SSRS. Only 7 (7%) had chief complaints related to mental health. A group of 78 patients (82%) were discharged with outpatient mental health referral, and 10 (10%) were admitted to a psychiatric facility. Universal adolescent suicide screening in an acute care setting did not significantly affect flow in our pediatric urgent care and was able to detect patients at risk of suicide, especially those with chief complaints unrelated to mental health.


Assuntos
Comportamento do Adolescente/psicologia , Instituições de Assistência Ambulatorial/estatística & dados numéricos , Programas de Rastreamento/métodos , Saúde Mental , Ideação Suicida , Prevenção do Suicídio , Suicídio , Adolescente , Saúde do Adolescente , Feminino , Humanos , Masculino , Escalas de Graduação Psiquiátrica , Encaminhamento e Consulta/estatística & dados numéricos , Medição de Risco/métodos , Fatores de Risco , Suicídio/psicologia , Inquéritos e Questionários , Reino Unido
8.
J Biol Chem ; 292(1): 15-30, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27903651

RESUMO

Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine.


Assuntos
Arginina/metabolismo , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/imunologia , Proliferação de Células , Complexos Multiproteicos/metabolismo , Células Mieloides/imunologia , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Tolerância Imunológica , Terapia de Imunossupressão , Ativação Linfocitária , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Linfócitos T/metabolismo
9.
Immunity ; 45(4): 817-830, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760338

RESUMO

Macrophage activation status is intrinsically linked to metabolic remodeling. Macrophages stimulated by interleukin 4 (IL-4) to become alternatively (or, M2) activated increase fatty acid oxidation and oxidative phosphorylation; these metabolic changes are critical for M2 activation. Enhanced glucose utilization is also characteristic of the M2 metabolic signature. Here, we found that increased glucose utilization is essential for M2 activation. Increased glucose metabolism in IL-4-stimulated macrophages required the activation of the mTORC2 pathway, and loss of mTORC2 in macrophages suppressed tumor growth and decreased immunity to a parasitic nematode. Macrophage colony stimulating factor (M-CSF) was implicated as a contributing upstream activator of mTORC2 in a pathway that involved PI3K and AKT. mTORC2 operated in parallel with the IL-4Rα-Stat6 pathway to facilitate increased glycolysis during M2 activation via the induction of the transcription factor IRF4. IRF4 expression required both mTORC2 and Stat6 pathways, providing an underlying mechanism to explain how glucose utilization is increased to support M2 activation.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Complexos Multiproteicos/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Interleucina-4/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT6/metabolismo
10.
Crit Rev Biochem Mol Biol ; 51(5): 379-394, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27685368

RESUMO

Viruses are obligate parasites that rely heavily on host cellular processes for replication. The small number of proteins typically encoded by a virus is faced with selection pressures that lead to the evolution of distinctive structural properties, allowing each protein to maintain its function under constraints such as small genome size, high mutation rate, and rapidly changing fitness conditions. One common strategy for this evolution is to utilize small building blocks to generate protein oligomers that assemble in multiple ways, thereby diversifying protein function and regulation. In this review, we discuss specific cases that illustrate how oligomerization is used to generate a single defined functional state, to modulate activity via different oligomeric states, or to generate multiple functional forms via different oligomeric states.


Assuntos
Multimerização Proteica , Proteínas Virais/química , Viroses/virologia , Vírus/química , Animais , Capsídeo/química , Capsídeo/imunologia , Capsídeo/metabolismo , Ebolavirus/química , Ebolavirus/imunologia , Ebolavirus/metabolismo , Flavivirus/química , Flavivirus/imunologia , Flavivirus/metabolismo , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , HIV/química , HIV/imunologia , HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Viroses/imunologia , Viroses/metabolismo , Replicação Viral , Vírus/imunologia , Vírus/metabolismo
11.
Cell Rep ; 16(12): 3208-3218, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27612415

RESUMO

Zika virus (ZIKV) is an emerging flavivirus that causes congenital abnormalities and Guillain-Barré syndrome. ZIKV infection also results in severe eye disease characterized by optic neuritis, chorioretinal atrophy, and blindness in newborns and conjunctivitis and uveitis in adults. We evaluated ZIKV infection of the eye by using recently developed mouse models of pathogenesis. ZIKV-inoculated mice developed conjunctivitis, panuveitis, and infection of the cornea, iris, optic nerve, and ganglion and bipolar cells in the retina. This phenotype was independent of the entry receptors Axl or Mertk, given that Axl(-/-), Mertk(-/-), and Axl(-/-)Mertk(-/-) double knockout mice sustained levels of infection similar to those of control animals. We also detected abundant viral RNA in tears, suggesting that virus might be secreted from lacrimal glands or shed from the cornea. This model provides a foundation for studying ZIKV-induced ocular disease, defining mechanisms of viral persistence, and developing therapeutic approaches for viral infections of the eye.


Assuntos
Pan-Uveíte/virologia , Lágrimas/virologia , Eliminação de Partículas Virais/fisiologia , Infecção por Zika virus/virologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/deficiência , Receptores Proteína Tirosina Quinases/deficiência , c-Mer Tirosina Quinase/deficiência , Receptor Tirosina Quinase Axl
12.
Immunity ; 44(6): 1325-36, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27332732

RESUMO

Greater understanding of the complex host responses induced by type 1 interferon (IFN) cytokines could allow new therapeutic approaches for diseases in which these cytokines are implicated. We found that in response to the Toll-like receptor-9 agonist CpGA, plasmacytoid dendritic cells (pDC) produced type 1 IFNs, which, through an autocrine type 1 IFN receptor-dependent pathway, induced changes in cellular metabolism characterized by increased fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS). Direct inhibition of FAO and of pathways that support this process, such as fatty acid synthesis, prevented full pDC activation. Type 1 IFNs also induced increased FAO and OXPHOS in non-hematopoietic cells and were found to be responsible for increased FAO and OXPHOS in virus-infected cells. Increased FAO and OXPHOS in response to type 1 IFNs was regulated by PPARα. Our findings reveal FAO, OXPHOS and PPARα as potential targets to therapeutically modulate downstream effects of type 1 IFNs.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , PPAR alfa/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Animais , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Diferenciação Celular , Células Cultivadas , Ilhas de CpG/imunologia , Enoil-CoA Hidratase/metabolismo , Regulação da Expressão Gênica , Imunidade , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Fosforilação Oxidativa , Racemases e Epimerases/metabolismo , Receptores de Interferon/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo
13.
Cell Rep ; 12(11): 1902-14, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26365184

RESUMO

Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs) infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.


Assuntos
Macrófagos/metabolismo , Neoplasias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular Tumoral , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral
14.
Immunity ; 41(6): 947-59, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25500368

RESUMO

Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Granulócitos/fisiologia , Monócitos/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células Mieloides/fisiologia , Neoplasias Experimentais/imunologia , Animais , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Linfócitos T CD8-Positivos/imunologia , Carcinogênese/genética , Caspase 8/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Técnicas de Cocultura , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Tolerância Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/genética
15.
Nat Immunol ; 15(9): 846-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086775

RESUMO

Alternative (M2) activation of macrophages driven via the α-chain of the receptor for interleukin 4 (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of the fatty acids that support this metabolic program has not been clear. We found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth and blocked protective responses to this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.


Assuntos
Antígenos CD36/imunologia , Ácidos Graxos/metabolismo , Interleucina-4/imunologia , Lipólise/imunologia , Lisossomos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Fosforilação Oxidativa , Transdução de Sinais/imunologia , Esterol Esterase/imunologia , Animais , Respiração Celular , Helmintíase Animal/imunologia , Humanos , Camundongos , Consumo de Oxigênio , Receptores de Interleucina-4/imunologia , Transcriptoma
16.
Nat Immunol ; 15(4): 323-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562310

RESUMO

The ligation of Toll-like receptors (TLRs) leads to rapid activation of dendritic cells (DCs). However, the metabolic requirements that support this process remain poorly defined. We found that DC glycolytic flux increased within minutes of exposure to TLR agonists and that this served an essential role in supporting the de novo synthesis of fatty acids for the expansion of the endoplasmic reticulum and Golgi required for the production and secretion of proteins that are integral to DC activation. Signaling via the kinases TBK1, IKKɛ and Akt was essential for the TLR-induced increase in glycolysis by promoting the association of the glycolytic enzyme HK-II with mitochondria. In summary, we identified the rapid induction of glycolysis as an integral component of TLR signaling that is essential for the anabolic demands of the activation and function of DCs.


Assuntos
Células Dendríticas/imunologia , Glicólise , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Ácidos Graxos/biossíntese , Glicólise/efeitos dos fármacos , Glicólise/genética , Glicólise/imunologia , Hexoquinase/metabolismo , Quinase I-kappa B/genética , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptores Toll-Like/agonistas
17.
J Immunol ; 191(8): 4202-10, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24038090

RESUMO

During infection with the helminth parasite Schistosoma mansoni, Ab regulates hepatic inflammation, and local production of Ig in the liver appears to play a role in this process. Exploring the development of the B cell response during infection, we found that parasite-specific IgG1-secreting plasma cells appeared first in the hepatic and mesenteric lymph nodes (LNs) and then at later times in the spleen, liver, and bone marrow. The LN B cell population peaked between weeks 10 and 12 of infection, and then contracted at a time that coincided with the expansion of the hepatic IgG1(+) B cell compartment, suggesting that B cells migrate from LNs to liver. CXCL9 and -16 expression in the liver increased during the time frame of B cell recruitment. Expression of the CXCL16 receptor CXCR6 was increased on B cells within the hepatic LNs, but not the mesenteric LNs. CXCR3, the receptor for CXCL9, was broadly expressed on IgG1(+) B cells in LNs and liver during infection. Increased hepatic expression of CXCL9 and -16 failed to occur if the IL-10R was blocked in vivo, an intervention associated with decreased liver B cell infiltration and the development of severe disease. Hepatic LN IgG1(+) cells migrated toward CXCL9 and -16 in vitro and to the liver in a pertussis toxin-sensitive fashion. Our data suggest that the coordinated expression of CXCL9 and -16 in the liver and of CXCR6 and CXCR3 on responding B cells within the hepatic LNs underpins establishment of the hepatic B cell infiltrate during chronic schistosomiasis.


Assuntos
Linfócitos B/imunologia , Imunoglobulina G/imunologia , Fígado/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Transferência Adotiva , Animais , Medula Óssea/imunologia , Movimento Celular/imunologia , Quimiocina CXCL16 , Quimiocina CXCL6/biossíntese , Quimiocina CXCL9/biossíntese , Inflamação/imunologia , Fígado/citologia , Linfonodos/citologia , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Toxina Pertussis , Receptores CXCR/biossíntese , Receptores CXCR3/biossíntese , Receptores CXCR6 , Receptores de Interleucina-10/biossíntese , Esquistossomose mansoni/parasitologia , Baço/citologia , Baço/imunologia
18.
PLoS One ; 8(4): e61961, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637937

RESUMO

Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution.


Assuntos
Arginase/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Pneumonia/imunologia , Pneumonia/metabolismo , Células Th2/imunologia , Animais , Antígenos de Helmintos/imunologia , Arginase/genética , Aspergillus/imunologia , Expressão Gênica , Granuloma/imunologia , Granuloma/metabolismo , Granuloma/patologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Células Mieloides/patologia , Ovalbumina/imunologia , Pneumonia/genética , Pneumonia/patologia , Schistosoma mansoni/imunologia
19.
Cell Host Microbe ; 12(3): 313-23, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22980328

RESUMO

Nitric oxide (NO) defends against intracellular pathogens, but its synthesis must be regulated due to cell and tissue toxicity. During infection, macrophages import extracellular arginine to synthesize NO, generating the byproduct citrulline. Accumulated intracellular citrulline is thought to fuel arginine synthesis catalyzed by argininosuccinate synthase (Ass1) and argininosuccinate lyase (Asl), which would lead to abundant NO production. Instead, we find that citrulline is exported from macrophages during early stages of NO production with <2% retained for recycling via the Ass1-Asl pathway. Later, extracellular arginine is depleted, and Ass1 expression allows macrophages to synthesize arginine from imported citrulline to sustain NO output. Ass1-deficient macrophages fail to salvage citrulline in arginine-scarce conditions, leading to their inability to control mycobacteria infection. Thus, extracellular arginine fuels rapid NO production in activated macrophages, and citrulline recycling via Ass1 and Asl is a fail-safe system that sustains optimum NO production.


Assuntos
Argininossuccinato Sintase/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium bovis/imunologia , Óxido Nítrico/metabolismo , Animais , Arginina/metabolismo , Argininossuccinato Sintase/genética , Células Cultivadas , Citrulina/metabolismo , Camundongos
20.
J Exp Med ; 209(3): 463-70, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22351933

RESUMO

Whole exome sequencing was used to determine the causative gene in patients with B cell defects of unknown etiology. A homozygous premature stop codon in exon 6 of PIK3R1 was identified in a young woman with colitis and absent B cells. The mutation results in the absence of p85α but normal expression of the p50α and p55α regulatory subunits of PI3K. Bone marrow aspirates from the patient showed <0.1% CD19(+) B cells with normal percentages of TdT(+)VpreB(+)CD19(-) B cell precursors. This developmental block is earlier than that seen in patients with defects in the B cell receptor signaling pathway or in a strain of engineered mice with a similar defect in p85α. The number and function of the patient's T cells were normal. However, Western blot showed markedly decreased p110δ, as well as absent p85α, in patient T cells, neutrophils, and dendritic cells. The patient had normal growth and development and normal fasting glucose and insulin. Mice with p85α deficiency have insulin hypersensitivity, defective platelet function, and abnormal mast cell development. In contrast, the absence of p85α in the patient results in an early and severe defect in B cell development but minimal findings in other organ systems.


Assuntos
Agamaglobulinemia/enzimologia , Agamaglobulinemia/genética , Linfócitos B/enzimologia , Linfócitos B/imunologia , Classe Ia de Fosfatidilinositol 3-Quinase/deficiência , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Agamaglobulinemia/imunologia , Sequência de Aminoácidos , Animais , Linfócitos B/patologia , Sequência de Bases , Estudos de Casos e Controles , Diferenciação Celular/genética , Códon sem Sentido , Citocinas/biossíntese , Análise Mutacional de DNA , Células Dendríticas/imunologia , Éxons , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA