Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 49: 101191, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33592336

RESUMO

OBJECTIVE: The distal dying-back of the longest nerve fibres is a hallmark of diabetic neuropathy, and impaired provision of energy in the form of adenosine triphosphate (ATP) may contribute to this neurodegenerative process. We hypothesised that energy supplementation via glycolysis and/or mitochondrial oxidative phosphorylation is compromised in cultured dorsal root ganglion (DRG) sensory neurons from diabetic rodents, thus contributing to axonal degeneration. Functional analysis of glycolysis and mitochondrial respiration and real-time measurement of ATP levels in live cells were our specific means to test this hypothesis. METHODS: DRG neuron cultures from age-matched control or streptozotocin (STZ)-induced type 1 diabetic rats were used for in vitro studies. Three plasmids containing ATP biosensors of varying affinities were transfected into neurons to study endogenous ATP levels in real time. The Seahorse XF analyser was used for glycolysis and mitochondrial respiration measurements. RESULTS: Fluorescence resonance energy transfer (FRET) efficiency (YFP/CFP ratio) of the ATP biosensors AT1.03 (low affinity) and AT1.03YEMK (medium affinity) were significantly higher than that measured using the ATP-insensitive construct AT1.03R122/6K in both cell bodies and neurites of DRG neurons (p < 0.0001). The ATP level was homogenous along the axons but higher in cell bodies in cultured DRG neurons from both control and diabetic rats. Treatment with oligomycin (an ATP synthase inhibitor in mitochondria) decreased the ATP levels in cultured DRG neurons. Likewise, blockade of glycolysis using 2-deoxy-d-glucose (2-DG: a glucose analogue) reduced ATP levels (p < 0.001). Cultured DRG neurons derived from diabetic rats showed a diminishment of ATP levels (p < 0.01), glycolytic capacity, glycolytic reserve and non-glycolytic acidification. Application of insulin-like growth factor-1 (IGF-1) significantly elevated all the above parameters in DRG neurons from diabetic rats. Oligomycin pre-treatment of DRG neurons, to block oxidative phosphorylation, depleted the glycolytic reserve and lowered basal respiration in sensory neurons derived from control and diabetic rats. Depletion was much higher in sensory neurons from diabetic rats compared to control rats. In addition, an acute increase in glucose concentration, in the presence or absence of oligomycin, elevated parameters of glycolysis by 1.5- to 2-fold while having no impact on mitochondrial respiration. CONCLUSION: We provide the first functional evidence for decreased glycolytic capacity in DRG neurons derived from type 1 diabetic rats. IGF-1 protected against the loss of ATP supplies in DRG cell bodies and axons in neurons derived from diabetic rats by augmenting various parameters of glycolysis and mitochondrial respiration.


Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Glicólise/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios , Gânglios Espinais/metabolismo , Masculino , Mitocôndrias/metabolismo , Neuritos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Estreptozocina/farmacologia
2.
Exp Neurol ; 273: 177-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26321687

RESUMO

BACKGROUND: Diabetic neuropathy comprises dying back of nerve endings that reflects impairment in axonal plasticity and regenerative nerve growth. Metabolic changes in diabetes can lead to a dysregulation of hormonal mediators, such as cytokines, that may constrain distal nerve fiber growth. Interleukin-17 (IL-17A), a proinflammatory and neurotropic cytokine produced by T-cells, was significantly reduced in sciatic nerve of streptozotocin (STZ)-diabetic rats. Thus we studied the effect of IL-17A on the phenotype of sensory neurons derived from age matched control or type 1 diabetic rats. The aims were to determine the ability of IL-17A to enhance neurite outgrowth in cultured sensory neurons, investigate the signaling pathways activated by IL-17A, study the role of mitochondria and mechanistically link to neurite outgrowth. RESULTS: IL-17A (10 ng/ml; p<0.05) significantly and dose-dependently increased total neurite outgrowth in cultures of adult dorsal root ganglia (DRG) sensory neurons derived from both control and streptozotocin (STZ)-diabetic rats. This enhancement was mediated by IL-17A-dependent activation of extracellular-regulated protein kinase (ERK) and phosphoinositide-3 kinase (PI-3K) signal transduction pathways. Pharmacological blockade of one of these activated pathways triggered complete inhibition of neurite outgrowth. IL-17A augmented mitochondrial bioenergetic function of sensory neurons derived from control or diabetic rats and this was also mediated via ERK or PI-3K. IL-17A-dependent elevation of bioenergetic function was associated with augmented expression of proteins of the mitochondrial electron transport system complexes. CONCLUSIONS: IL-17A enhanced axonal plasticity through activation of ERK and PI-3K pathways and was associated with augmented mitochondrial bioenergetic function in sensory neurons.


Assuntos
Diabetes Mellitus Experimental/patologia , Interleucina-17/farmacologia , Mitocôndrias/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Animais , Antibióticos Antineoplásicos/toxicidade , Butadienos/farmacologia , Células Cultivadas , Cromonas/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Gânglios Espinais/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Morfolinas/farmacologia , Complexos Multienzimáticos/metabolismo , Nitrilas/farmacologia , Ratos , Ratos Sprague-Dawley , Estreptozocina/toxicidade
3.
Acta Neuropathol Commun ; 2: 60, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24894521

RESUMO

INTRODUCTION: The pathogenesis of heart failure (HF) in diabetic individuals, called "diabetic cardiomyopathy", is only partially understood. Alterations in the cardiac autonomic nervous system due to oxidative stress have been implicated. The intrinsic cardiac nervous system (ICNS) is an important regulatory pathway of cardiac autonomic function, however, little is known about the alterations that occur in the ICNS in diabetes. We sought to characterize morphologic changes and the role of oxidative stress within the ICNS of diabetic hearts. Cultured ICNS neuronal cells from the hearts of 3- and 6-month old type 1 diabetic streptozotocin (STZ)-induced diabetic Sprague-Dawley rats and age-matched controls were examined. Confocal microscopy analysis for protein gene product 9.5 (PGP 9.5) and amino acid adducts of (E)-4-hydroxy-2-nonenal (4-HNE) using immunofluorescence was undertaken. Cell morphology was then analyzed in a blinded fashion for features of neuronal dystrophy and the presence of 4-HNE adducts. RESULTS: At 3-months, diabetic ICNS neuronal cells exhibited 30% more neurite swellings per area (p = 0.01), and had a higher proportion with dystrophic appearance (88.1% vs. 50.5%; p = <0.0001), as compared to control neurons. At 6-months, diabetic ICNS neurons exhibited more features of dystrophy as compared to controls (74.3% vs. 62.2%; p = 0.0448), with 50% more neurite branching (p = 0.0015) and 50% less neurite outgrowth (p = <0.001). Analysis of 4-HNE adducts in ICNS neurons of 6-month diabetic rats demonstrated twice the amount of reactive oxygen species (ROS) as compared to controls (p = <0.001). CONCLUSION: Neuronal dystrophy occurs in the ICNS neurons of STZ-induced diabetic rats, and accumulates temporally within the disease process. In addition, findings implicate an increase in ROS within the neuronal processes of ICNS neurons of diabetic rats suggesting an association between oxidative stress and the development of dystrophy in cardiac autonomic neurons.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Cardiopatias/etiologia , Distrofias Neuroaxonais/etiologia , Aldeídos/metabolismo , Animais , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Modelos Animais de Doenças , Cardiopatias/patologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Neurônios/efeitos dos fármacos , Neurotrofina 3/farmacologia , Ratos , Ratos Sprague-Dawley , Ubiquitina Tiolesterase/metabolismo
4.
Brain ; 135(Pt 6): 1751-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561641

RESUMO

Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gânglios Espinais/patologia , Doenças Mitocondriais/patologia , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Potenciais da Membrana/genética , Camundongos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/etiologia , Membranas Mitocondriais/efeitos dos fármacos , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Neuritos/patologia , Consumo de Oxigênio/efeitos dos fármacos , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/etiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Estimulação Física/efeitos adversos , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Resveratrol , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/uso terapêutico , Fatores de Transcrição/metabolismo , Transdução Genética
5.
Brain Res ; 1423: 87-95, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21985959

RESUMO

The presence of a proinflammatory environment in the sensory neuron axis in diabetes was tested by measuring levels of proinflammatory cytokines in lumbar dorsal root ganglia (DRG) and peripheral nerve from age matched control and streptozotocin (STZ)-induced diabetic rats. The levels of tumor necrosis factor-α (TNFα) and other cytokines were diminished in lumbar DRG from diabetic animals. Consequently, we tested the hypothesis that TNFα modulated axonal plasticity in adult sensory neurons and posited that impairments in this signal transduction pathway may underlie degeneration in diabetic sensory neuropathy. Cultured adult rat sensory neurons were grown under defined conditions and TNFα caused a dose-dependent 2-fold (P<0.05) elevation in neurite outgrowth. Neurons derived from 3 to 5month STZ-induced diabetic rats exhibited significantly reduced levels of neurite outgrowth in response to TNFα. TNFα enhanced NF-κB activity as assessed using Western blotting and plasmid reporter technology. Blockade of TNFα-induction of NF-κB activation caused inhibition of neurite outgrowth in cultured neurons. Immunofluorescent staining for NF-κB subunit p50 within neuronal nuclei revealed that medium to large diameter neurons were most susceptible to NF-κB inhibition and was associated with decreased neurite outgrowth. The results demonstrating reduced cytokine expression in DRG confirm that diabetic sensory neuropathy does not involve a neuroinflammatory component at this stage of the disease in experimental animal models. In addition, it is hypothesized that reduced TNFα expression in the DRG and possibly associated deficits in anterograde transport may contribute to impaired collatoral sprouting and regeneration in target tissue in type 1 diabetes.


Assuntos
Gânglios Espinais/patologia , NF-kappa B/metabolismo , Neuritos/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Fatores Etários , Análise de Variância , Animais , Glicemia/metabolismo , Peso Corporal , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transfecção , Tubulina (Proteína)/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Diabetes ; 58(6): 1356-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19252136

RESUMO

OBJECTIVE: Reactive oxygen species (ROS) are pro-oxidant factors in distal neurodegeneration in diabetes. We tested the hypothesis that sensory neurons exposed to type 1 diabetes would exhibit enhanced ROS and oxidative stress and determined whether this stress was associated with abnormal axon outgrowth. RESEARCH DESIGN AND METHODS: Lumbar dorsal root ganglia sensory neurons from normal or 3- to 5-month streptozotocin (STZ)-diabetic rats were cultured with 10 or 25-50 mmol/l glucose. Cell survival and axon outgrowth were assessed. ROS were analyzed using confocal microscopy. Immunofluorescent staining detected expression of manganese superoxide dismutase (MnSOD) and adducts of 4-hydroxy-2-nonenal (4-HNE), and MitoFluor Green dye detected mitochondria. RESULTS: Dorsal root ganglion neurons from normal rats exposed to 25-50 mmol/l glucose did not exhibit oxidative stress or cell death. Cultures from diabetic rats exhibited a twofold (P < 0.001) elevation of ROS in axons after 24 h in 25 mmol/l glucose compared with 10 mmol/l glucose or mannitol. Perikarya exhibited no change in ROS levels. Axonal outgrowth was reduced by approximately twofold (P < 0.001) in diabetic cultures compared with control, as was expression of MnSOD. The antioxidant N-acetyl-cysteine (1 mmol/l) lowered axonal ROS levels, normalized aberrant axonal structure, and prevented deficits in axonal outgrowth in diabetic neurons (P < 0.05). CONCLUSIONS: Dorsal root ganglia neurons with a history of diabetes expressed low MnSOD and high ROS in axons. Oxidative stress was initiated by high glucose concentration in neurons with an STZ-induced diabetic phenotype. Induction of ROS was associated with impaired axonal outgrowth and aberrant dystrophic structures that may precede or predispose the axon to degeneration and dissolution in human diabetic neuropathy.


Assuntos
Envelhecimento/fisiologia , Axônios/patologia , Diabetes Mellitus Experimental/patologia , Glucose/farmacologia , Estresse Oxidativo/fisiologia , Células Receptoras Sensoriais/patologia , Animais , Axônios/metabolismo , Caspases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas de Neurofilamentos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Superóxido Dismutase/metabolismo
7.
J Neurosci ; 25(7): 1682-90, 2005 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-15716404

RESUMO

Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB (NF-kappaB) for survival. In contrast, adult DRG neurons survive permanent axotomy in vivo and in defined culture media devoid of exogenous neurotrophic factors in vitro. Peripheral axotomy in adult rats induces local accumulation of the cytokine tumor necrosis factor alpha (TNFalpha), a potent activator of NF-kappaB activity. We tested the hypothesis that activation of NF-kappaB stimulated by endogenous TNFalpha was required for survival of axotomized adult sensory neurons. Peripheral axotomy of lumbar DRG neurons by sciatic nerve crush induced a very rapid (within 2 h) and significant elevation in NF-kappaB-binding activity. This phenomenon was mimicked in cultured neurons in which there was substantial NF-kappaB nuclear translocation and a significant rise in NF-kappaB DNA-binding activity after plating. Inhibitors of NF-kappaB (SN50 or NF-kappaB decoy DNA) resulted in necrotic cell death of medium to large neurons (> or =40 microm) within 24 h (60 and 75%, respectively), whereas inhibition of p38 and mitogen-activated protein/extracellular signal-regulated kinase did not effect survival. ELISA revealed that these cultures contained TNFalpha, and exposure to an anti-TNFalpha antibody inhibited NF-kappaB DNA-binding activity by approximately 35% and killed approximately 40% of medium to large neurons within 24 h. The results show for the first time that cytokine-mediated activation of NF-kappaB is a component of the signaling pathway responsible for maintenance of adult sensory neuron survival after axon damage.


Assuntos
NF-kappa B/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Fator de Necrose Tumoral alfa/fisiologia , Animais , Comunicação Autócrina , Axotomia , Sobrevivência Celular , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , DNA/metabolismo , Gânglios Espinais/citologia , Proteínas I-kappa B/genética , Sistema de Sinalização das MAP Quinases , Masculino , NF-kappa B/antagonistas & inibidores , Compressão Nervosa , Degeneração Neural , Neurônios Aferentes/citologia , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Comunicação Parácrina , Peptídeos/farmacologia , Ligação Proteica , Subunidades Proteicas , Ratos , Ratos Wistar , Nervo Isquiático/lesões , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA