Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(12): 101344, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118421

RESUMO

Homologous recombination deficiency (HRD) is a predictive biomarker for poly(ADP-ribose) polymerase 1 inhibitor (PARPi) sensitivity. Routine HRD testing relies on identifying BRCA mutations, but additional HRD-positive patients can be identified by measuring genomic instability (GI), a consequence of HRD. However, the cost and complexity of available solutions hamper GI testing. We introduce a deep learning framework, GIInger, that identifies GI from HRD-induced scarring observed in low-pass whole-genome sequencing data. GIInger seamlessly integrates into standard BRCA testing workflows and yields reproducible results concordant with a reference method in a multisite study of 327 ovarian cancer samples. Applied to a BRCA wild-type enriched subgroup of 195 PAOLA-1 clinical trial patients, GIInger identified HRD-positive patients who experienced significantly extended progression-free survival when treated with PARPi. GIInger is, therefore, a cost-effective and easy-to-implement method for accurately stratifying patients with ovarian cancer for first-line PARPi treatment.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Intervalo Livre de Progressão , Recombinação Homóloga/genética , Genômica
2.
Genome Res ; 33(9): 1513-1526, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37625847

RESUMO

Changes in gene regulation are thought to underlie most phenotypic differences between species. For subterranean rodents such as the naked mole-rat, proposed phenotypic adaptations include hypoxia tolerance, metabolic changes, and cancer resistance. However, it is largely unknown what regulatory changes may associate with these phenotypic traits, and whether these are unique to the naked mole-rat, the mole-rat clade, or are also present in other mammals. Here, we investigate regulatory evolution in the heart and liver from two African mole-rat species and two rodent outgroups using genome-wide epigenomic profiling. First, we adapted and applied a phylogenetic modeling approach to quantitatively compare epigenomic signals at orthologous regulatory elements and identified thousands of promoter and enhancer regions with differential epigenomic activity in mole-rats. These elements associate with known mole-rat adaptations in metabolic and functional pathways and suggest candidate genetic loci that may underlie mole-rat innovations. Second, we evaluated ancestral and species-specific regulatory changes in the study phylogeny and report several candidate pathways experiencing stepwise remodeling during the evolution of mole-rats, such as the insulin and hypoxia response pathways. Third, we report nonorthologous regulatory elements overlap with lineage-specific repetitive elements and appear to modify metabolic pathways by rewiring of HNF4 and RAR/RXR transcription factor binding sites in mole-rats. These comparative analyses reveal how mole-rat regulatory evolution informs previously reported phenotypic adaptations. Moreover, the phylogenetic modeling framework we propose here improves upon the state of the art by addressing known limitations of inter-species comparisons of epigenomic profiles and has broad implications in the field of comparative functional genomics.


Assuntos
Genômica , Sequências Reguladoras de Ácido Nucleico , Animais , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Ratos-Toupeira/genética , Hipóxia
3.
J Cell Physiol ; 238(4): 761-775, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790936

RESUMO

The naked mole-rat (NMR, Heterocephalus glaber) is of significant interest to biogerontological research, rarely developing age-associated diseases, such as cancer. The transmembrane glycoprotein CD44 is upregulated in certain cancers and CD44 cleavage by a disintegrin and metalloproteinase 10 (ADAM10) regulates cellular migration. Here we provide evidence that mature ADAM10 is expressed in NMR primary skin fibroblasts (NPSF), and that ionomycin increases cell surface ADAM10 localization. However, we observed an absence of ADAM10 mediated CD44 cleavage, as well as shedding of exogenous and overexpressed betacellulin in NPSF, whereas in mouse primary skin fibroblasts ionomycin induced ADAM10-dependent cleavage of both CD44 and betacellulin. Overexpressing a hyperactive form of the Ca2+ -dependent phospholipid scramblase ANO6 in NPSF increased phosphatidylserine (PS) externalization, which rescued the ADAM10 sheddase activity and promoted cell migration in NPSF in an ADAM10-dependent manner. These findings suggest that dysregulation of ADAM10 shedding activity is due to a deficient PS externalization in NMR.


Assuntos
Proteína ADAM10 , Fibroblastos , Fosfatidilserinas , Animais , Camundongos , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Betacelulina/metabolismo , Fibroblastos/metabolismo , Ionomicina/farmacologia , Proteínas de Membrana/metabolismo , Ratos-Toupeira , Proteínas de Transferência de Fosfolipídeos
4.
Arthritis Rheumatol ; 75(3): 352-363, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36122169

RESUMO

OBJECTIVE: Mesenchymal stem/stromal cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) have been reported to alleviate pain in patients with knee osteoarthritis (OA). We undertook this study to determine whether MSCs and/or MSC-EVs reduce OA pain through influencing sensory neuron excitability in OA joints. METHODS: We induced knee OA in adult male C57BL/6J mice through destabilization of the medial meniscus (DMM) surgery. Mice were sorted into 4 experimental groups with 9 mice per group as follows: unoperated sham, untreated DMM, DMM plus MSC treatment, and DMM plus MSC-EV treatment. Treated mice received either MSCs at week 14 postsurgery or MSC-EVs at weeks 12 and 14 postsurgery. Mouse behavior was evaluated by digging and rotarod tests and the Digital Ventilated Cage system. At week 16, mouse knee joints were harvested for histology, and dorsal root ganglion (DRG) neurons were isolated for electrophysiology. Furthermore, we induced hyperexcitability in DRG neurons in vitro using nerve growth factor (NGF) then treated these neurons with or without MSC-EVs and evaluated neuron excitability. RESULTS: MSC- and MSC-EV-treated DMM-operated mice did not display pain-related behavior changes (in locomotion, digging, and sleep) that occurred in untreated DMM-operated mice. The absence of pain-related behaviors in MSC- and MSC-EV-treated mice was not the result of reduced joint damage but rather a lack of knee-innervating sensory neuron hyperexcitability that was observed in untreated DMM-operated mice. Furthermore, we found that NGF-induced sensory neuron hyperexcitability is prevented by MSC-EV treatment (P < 0.05 versus untreated NGF-sensitized neurons when comparing action potential threshold). CONCLUSION: MSCs and MSC-EVs may reduce pain in OA by direct action on peripheral sensory neurons.


Assuntos
Vesículas Extracelulares , Osteoartrite do Joelho , Adulto , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural , Células Receptoras Sensoriais , Osteoartrite do Joelho/terapia , Dor/etiologia
5.
Front Oncol ; 12: 969238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465367

RESUMO

Microsatellite instability (MSI) is a molecular signature of mismatch repair deficiency (dMMR), a predictive marker of immune checkpoint inhibitor therapy response. Despite its recognized pan-cancer value, most methods only support detection of this signature in colorectal cancer. In addition to the tissue-specific differences that impact the sensitivity of MSI detection in other tissues, the performance of most methods is also affected by patient ethnicity, tumor content, and other sample-specific properties. These limitations are particularly important when only tumor samples are available and restrict the performance and adoption of MSI testing. Here we introduce MSIdetect, a novel solution for NGS-based MSI detection. MSIdetect models the impact of indel burden and tumor content on read coverage at a set of homopolymer regions that we found are minimally impacted by sample-specific factors. We validated MSIdetect in 139 Formalin-Fixed Paraffin-Embedded (FFPE) clinical samples from colorectal and endometrial cancer as well as other more challenging tumor types, such as glioma or sebaceous adenoma or carcinoma. Based on analysis of these samples, MSIdetect displays 100% specificity and 96.3% sensitivity. Limit of detection analysis supports that MSIdetect is sensitive even in samples with relatively low tumor content and limited microsatellite instability. Finally, the results obtained using MSIdetect in tumor-only data correlate well (R=0.988) with what is obtained using tumor-normal matched pairs, demonstrating that the solution addresses the challenges posed by MSI detection from tumor-only data. The accuracy of MSI detection by MSIdetect in different cancer types coupled with the flexibility afforded by NGS-based testing will support the adoption of MSI testing in the clinical setting and increase the number of patients identified that are likely to benefit from immune checkpoint inhibitor therapy.

6.
J Physiol ; 600(16): 3819-3836, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35775903

RESUMO

Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα-triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1-evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα-mediated increases in intracellular [Ca2+ ] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre-treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα-induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease. KEY POINTS: The pro-inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα-mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease.


Assuntos
Nociceptores , Dor Visceral , Animais , Capsaicina/farmacologia , Gânglios Espinais/metabolismo , Camundongos , Nociceptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Dor Visceral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Invest Dermatol ; 142(11): 2853-2863.e4, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691364

RESUMO

Naked mole-rats (NMRs) (Heterocephalus glaber) are long-lived mammals that possess a natural resistance to cancer and other age-related pathologies, maintaining a healthy life span >30 years. In this study, using immunohistochemical and RNA-sequencing analyses, we compare skin morphology, cellular composition, and global transcriptome signatures between young and aged (aged 3‒4 vs. 19‒23 years, respectively) NMRs. We show that similar to aging in human skin, aging in NMRs is accompanied by a decrease in epidermal thickness; keratinocyte proliferation; and a decline in the number of Merkel cells, T cells, antigen-presenting cells, and melanocytes. Similar to that in human skin aging, expression levels of dermal collagens are decreased, whereas matrix metalloproteinase 9 and matrix metalloproteinase 11 levels increased in aged versus in young NMR skin. RNA-sequencing analyses reveal that in contrast to human or mouse skin aging, the transcript levels of several longevity-associated (Igfbp3, Igf2bp3, Ing2) and tumor-suppressor (Btg2, Cdkn1a, Cdkn2c, Dnmt3a, Hic1, Socs3, Sfrp1, Sfrp5, Thbs1, Tsc1, Zfp36) genes are increased in aged NMR skin. Overall, these data suggest that specific features in the NMR skin aging transcriptome might contribute to the resistance of NMRs to spontaneous skin carcinogenesis and provide a platform for further investigations of NMRs as a model organism for studying the biology and disease resistance of human skin.


Assuntos
Proteínas Imediatamente Precoces , Envelhecimento da Pele , Animais , Humanos , Camundongos , Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Longevidade/genética , Metaloproteinase 11 da Matriz/genética , Metaloproteinase 11 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , RNA/metabolismo , Envelhecimento da Pele/genética , Proteínas Supressoras de Tumor/genética
8.
Nature ; 604(7906): 517-524, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418684

RESUMO

The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.


Assuntos
Longevidade , Taxa de Mutação , Animais , Humanos , Longevidade/genética , Mamíferos/genética , Mutagênese/genética , Mutação
9.
Adv Exp Med Biol ; 1319: 341-352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424524

RESUMO

It is widely accepted that cancer is driven by genetic mutations that confer uncontrolled cell proliferation and tumor formation. For tumors to take hold and grow, cancer cells evolve mechanisms to favorably shape their microenvironment and avoid being cleared by the immune system. Cancer is not unique to human, but rather affects nearly all multicellular organisms albeit to different degrees. The different degrees of cancer susceptibility across the animal kingdom could be attributed to several factors, which have been the subject of several studies in recent years. The naked mole-rat (NMR, Heterocephalus glaber), an exceptionally long-lived rodent, which, as discussed in detail in the next section, displays significant cancer resistance with only a small number of animals being reported to exhibit spontaneous neoplasms. The reason why studying cancer resistance in NMRs is of particular interest is that not only are they now an established laboratory species, but that NMRs are mammals and thus there is great potential for translating knowledge about their cancer resistance into preventing and/or treating cancer in humans and companion animals.


Assuntos
Ratos-Toupeira , Neoplasias , Animais , Proliferação de Células , Neoplasias/genética , Microambiente Tumoral
10.
Cancer Discov ; 11(5): 1228-1247, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33328217

RESUMO

KRAS-mutant colorectal cancers are resistant to therapeutics, presenting a significant problem for ∼40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant colorectal cancer. Using Kras-mutant mouse models and mouse- and patient-derived organoids, we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small-molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of colorectal cancers have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent cotargeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population that may benefit from its clinical application. SIGNIFICANCE: KRAS mutation and elevated c-MYC are widespread in many tumors but remain predominantly untargetable. We find that mutant KRAS modulates translation, culminating in increased expression of c-MYC. We describe an effective strategy targeting mTORC1 and MNK in KRAS-mutant mouse and human models, pathways that are also commonly co-upregulated in colorectal cancer.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Neoplasias Colorretais/genética , Fator de Iniciação 4E em Eucariotos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Inibidores de MTOR/farmacologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Animais , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
11.
J Bone Joint Surg Am ; 102(12): 1075-1082, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32559052

RESUMO

BACKGROUND: Evidence supports the use of cementless tibial component fixation in total knee replacement but there is a paucity of literature on posterior stabilized designs. This randomized study of posterior stabilized total knee replacements compared cemented and cementless tibial fixation with regard to component migration, bone remodeling, and clinical outcomes. METHODS: This prospective single-center, blinded, randomized clinical trial included 100 patients with a mean age of 68 years (range, 45 to 87 years). Operations were performed by either of 2 experienced arthroplasty surgeons using the Advanced Coated System (ACS) prosthesis (Implantcast). Patients were randomized to cemented or cementless tibial fixation; other variables were standardized. Radiostereometric analysis (RSA) and dual x-ray absorptiometry (DXA) were performed during the inpatient stay and at 3, 12, and 24 months to monitor tibial component migration and periprosthetic bone mineral density (BMD). Clinical scores including the Oxford Knee Score and Short Form-12 were assessed prior to surgery and during follow-up. RESULTS: Late and continuing migration was found with cementless fixation. At 24 months, the mean subsidence was significantly greater for the cementless group (1.22 mm) compared with the cemented group (0.06 mm) (p < 0.01). The mean maximum total point motion at 24 months was 2.04 mm for the cementless group and 0.48 mm for the cemented group (p < 0.01). The cemented group had more BMD loss than the cementless group in the medial, lateral, and anterior periprosthetic regions. Two tibial components were revised in the cementless group, including 1 for loosening. Clinical scores improved equally in the 2 groups. CONCLUSIONS: Late ongoing subsidence and high maximum total point motion in our patients who underwent cementless tibial fixation raise concerns about the fixation stability of ACS cementless posterior stabilized knee replacements. Cemented tibial components were stable. Thus, we advise caution regarding the use of cementless tibial components and recommend tibial fixation with cement for the ACS posterior stabilized total knee replacement. LEVEL OF EVIDENCE: Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Artroplastia do Joelho/métodos , Cimentos Ósseos/uso terapêutico , Prótese do Joelho , Osteoartrite do Joelho/cirurgia , Falha de Prótese , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Joelho/instrumentação , Densidade Óssea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desenho de Prótese , Tíbia/cirurgia , Resultado do Tratamento
12.
Arthritis Rheumatol ; 72(10): 1749-1758, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32418284

RESUMO

OBJECTIVE: Joint pain is the major clinical symptom of arthritis that affects millions of people. Controlling the excitability of knee-innervating dorsal root ganglion (DRG) neurons (knee neurons) could potentially provide pain relief. We undertook this study to evaluate whether the newly engineered adeno-associated virus (AAV) serotype, AAV-PHP.S, can deliver functional artificial receptors to control knee neuron excitability following intraarticular knee injection. METHODS: The AAV-PHP.S virus, packaged with dTomato fluorescent protein and either excitatory (Gq ) or inhibitory (Gi ) designer receptors exclusively activated by designer drugs (DREADDs), was injected into the knee joints of adult mice. Labeling of DRG neurons with AAV-PHP.S from the knee was evaluated using immunohistochemistry. The functionality of Gq - and Gi -DREADDs was evaluated using whole-cell patch clamp electrophysiology on acutely cultured DRG neurons. Pain behavior in mice was assessed using a digging assay, dynamic weight bearing, and rotarod performance, before and after intraperitoneal administration of the DREADD activator, Compound 21. RESULTS: We showed that AAV-PHP.S can deliver functional genes into ~7% of lumbar DRG neurons when injected into the knee joint in a similar manner to the well-established retrograde tracer, fast blue. Short-term activation of AAV-PHP.S-delivered Gq -DREADD increased excitability of knee neurons in vitro (P = 0.02 by unpaired t-test), without inducing overt pain in mice when activated in vivo. By contrast, in vivo Gi -DREADD activation alleviated digging deficits induced by Freund's complete adjuvant-mediated knee inflammation (P = 0.0002 by repeated-measures analysis of variance [ANOVA] followed by Holm-Sidak multiple comparisons test). A concomitant decrease in knee neuron excitability was observed in vitro (P = 0.005 by ANOVA followed by Holm-Sidak multiple comparisons test). CONCLUSION: We describe an AAV-mediated chemogenetic approach to specifically control joint pain, which may be utilized in translational arthritic pain research.


Assuntos
Gânglios Espinais/metabolismo , Terapia Genética/métodos , Inflamação/terapia , Neurônios/metabolismo , Manejo da Dor/métodos , Dor/metabolismo , Animais , Dependovirus , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Articulação do Joelho/metabolismo , Camundongos
13.
Pain ; 161(9): 2129-2141, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32332252

RESUMO

ABSTRACT: Pain is a principal contributor to the global burden of arthritis with peripheral sensitization being a major cause of arthritis-related pain. Within the knee joint, distal endings of dorsal root ganglion neurons (knee neurons) interact with fibroblast-like synoviocytes (FLS) and the inflammatory mediators they secrete, which are thought to promote peripheral sensitization. Correspondingly, RNA sequencing has demonstrated detectable levels of proinflammatory genes in FLS derived from arthritis patients. This study confirms that stimulation with tumor necrosis factor (TNF-α) results in expression of proinflammatory genes in mouse and human FLS (derived from osteoarthritis and rheumatoid arthritis patients), as well as increased secretion of cytokines from mouse TNF-α-stimulated FLS (TNF-FLS). Electrophysiological recordings from retrograde labelled knee neurons cocultured with TNF-FLS, or supernatant derived from TNF-FLS, revealed a depolarized resting membrane potential, increased spontaneous action potential firing, and enhanced TRPV1 function, all consistent with a role for FLS in mediating the sensitization of pain-sensing nerves in arthritis. Therefore, data from this study demonstrate the ability of FLS activated by TNF-α to promote neuronal sensitization, results that highlight the importance of both nonneuronal and neuronal cells to the development of pain in arthritis.


Assuntos
Sinoviócitos , Animais , Células Cultivadas , Técnicas de Cocultura , Fibroblastos , Humanos , Articulação do Joelho , Camundongos , Dor , Células Receptoras Sensoriais , Membrana Sinovial , Fator de Necrose Tumoral alfa
14.
Sci Rep ; 9(1): 6632, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036852

RESUMO

Hyaluronan (HA) is a key component of the extracellular matrix. Given the fundamental role of HA in the cancer resistance of the naked mole-rat (NMR), we undertook to explore the structural and soft matter properties of this species-specific variant, a necessary step for its development as a biomaterial. We examined HA extracted from NMR brain, lung, and skin, as well as that isolated from the medium of immortalised cells. In common with mouse HA, NMR HA forms a range of assemblies corresponding to a wide distribution of molecular weights. However, unique to the NMR, are highly folded structures, whose characteristic morphology is dependent on the tissue type. Skin HA forms tightly packed assemblies that have spring-like mechanical properties in addition to a strong affinity for water. Brain HA forms three dimensional folded structures similar to the macroscopic appearance of the gyri and sulci of the human brain. Lung HA forms an impenetrable mesh of interwoven folds in a morphology that can only be described as resembling a snowman. Unlike HA that is commercially available, NMR HA readily forms robust gels without the need for chemical cross-linking. NMR HA gels sharply transition from viscoelastic to elastic like properties upon dehydration or repeated loading. In addition, NMR HA can form ordered thin films with an underlying semi-crystalline structure. Given the role of HA in maintaining hydration in the skin it is plausible that the folded structures contribute to both the elasticity and youthfulness of NMR skin. It is also possible that such densely folded materials could present a considerable barrier to cell invasion throughout the tissues, a useful characteristic for a biomaterial.


Assuntos
Ácido Hialurônico/química , Animais , Encéfalo/metabolismo , Humanos , Pulmão/metabolismo , Microscopia de Força Atômica , Ratos-Toupeira , Pele/metabolismo
15.
Neuropharmacology ; 143: 49-62, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240782

RESUMO

Ongoing, spontaneous pain is characteristic of inflammatory joint pain and reduces an individual's quality of life. To understand the neural basis of inflammatory joint pain, we made a unilateral knee injection of complete Freund's adjuvant (CFA) in mice, which reduced their natural digging behavior. We hypothesized that sensitization of knee-innervating dorsal root ganglion (DRG) neurons underlies this altered behavior. To test this hypothesis, we performed electrophysiological recordings on retrograde labeled knee-innervating primary DRG neuron cultures and measured their responses to a number of electrical and chemical stimuli. We found that 24-h after CFA-induced knee inflammation, knee neurons show a decreased action potential generation threshold, as well as increased GABA and capsaicin sensitivity, but have unaltered acid sensitivity. The inflammation-induced sensitization of knee neurons persisted for 24-h in culture, but was not observed after 48-h in culture. Through immunohistochemistry, we showed that the increased knee neuron capsaicin sensitivity correlated with enhanced expression of the capsaicin receptor, transient receptor potential vanilloid 1 (TRPV1) in knee-innervating neurons of the CFA-injected side. We also observed an increase in the co-expression of TRPV1 with tropomyosin receptor kinase A (TrkA), which is the receptor for nerve growth factor (NGF), suggesting that NGF partially induces the increased TRPV1 expression. Lastly, we found that systemic administration of the TRPV1 antagonist, A-425619, reversed the decrease in digging behavior induced by CFA injection, further confirming the role of TRPV1, expressed by knee neurons, in acute inflammatory joint pain.


Assuntos
Artralgia/metabolismo , Gânglios Espinais/metabolismo , Inflamação/metabolismo , Atividade Motora/fisiologia , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Artralgia/tratamento farmacológico , Artralgia/patologia , Capsaicina , Células Cultivadas , Modelos Animais de Doenças , Feminino , Adjuvante de Freund , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Membro Posterior , Inflamação/tratamento farmacológico , Inflamação/patologia , Isoquinolinas/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Receptor trkA/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/farmacologia , Ácido gama-Aminobutírico/metabolismo
16.
Nat Commun ; 9(1): 532, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416038

RESUMO

The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/metabolismo , RNA/metabolismo , Ribonuclease III/metabolismo , Células A549 , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Perfilação da Expressão Gênica , Recombinação Homóloga , Humanos , RNA/genética , Interferência de RNA , Ribonuclease III/genética
17.
Nat Commun ; 8(1): 695, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947795

RESUMO

The Hippo tumor suppressor pathway is essential for development and tissue growth control, encompassing a core cassette consisting of the Hippo (MST1/2), Warts (LATS1/2), and Tricornered (NDR1/2) kinases together with MOB1 as an important signaling adaptor. However, it remains unclear which regulatory interactions between MOB1 and the different Hippo core kinases coordinate development, tissue growth, and tumor suppression. Here, we report the crystal structure of the MOB1/NDR2 complex and define key MOB1 residues mediating MOB1's differential binding to Hippo core kinases, thereby establishing MOB1 variants with selective loss-of-interaction. By studying these variants in human cancer cells and Drosophila, we uncovered that MOB1/Warts binding is essential for tumor suppression, tissue growth control, and development, while stable MOB1/Hippo binding is dispensable and MOB1/Trc binding alone is insufficient. Collectively, we decrypt molecularly, cell biologically, and genetically the importance of the diverse interactions of Hippo core kinases with the pivotal MOB1 signal transducer.The Hippo tumor suppressor pathway is essential for development and tissue growth control. Here the authors employ a multi-disciplinary approach to characterize the interactions of the three Hippo kinases with the signaling adaptor MOB1 and show how they differently affect development, tissue growth and tumor suppression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , MAP Quinase Quinase Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Linhagem Celular Tumoral , Drosophila melanogaster/genética , Via de Sinalização Hippo , Humanos , MAP Quinase Quinase Quinases/genética , Modelos Moleculares , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
Cell Rep ; 17(3): 748-758, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27732851

RESUMO

The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF), an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness.


Assuntos
Dor/metabolismo , Receptor trkA/metabolismo , Animais , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ratos-Toupeira , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nociceptores/metabolismo , Dor/patologia , Dor/fisiopatologia , Domínios Proteicos , Proteômica , Receptor trkA/química , Canais de Cátion TRPV/metabolismo
19.
Biochem Biophys Res Commun ; 464(1): 38-44, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26032502

RESUMO

ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Epiteliais de Sódio/química , Epitopos/química , Proteínas Recombinantes de Fusão/química , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Anticorpos/química , Células CHO , Linhagem Celular Transformada , Cricetulus , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Epitopos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Técnicas de Patch-Clamp , Multimerização Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Semin Cell Dev Biol ; 36: 102-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263010

RESUMO

Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins.


Assuntos
Biossíntese de Proteínas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Humanos , Iniciação Traducional da Cadeia Peptídica/genética , Fosforilação , Dobramento de Proteína , RNA Mensageiro/genética , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA