Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 5(11): 100877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37869071

RESUMO

Background & Aims: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common complication of obesity with a hallmark feature of hepatic steatosis. Recent data from animal models of MAFLD have demonstrated substantial changes in macrophage composition in the fatty liver. In humans, the relationship between liver macrophage heterogeneity and liver steatosis is less clear. Methods: Liver tissue from 21 participants was collected at time of bariatric surgery and analysed using flow cytometry, immunofluorescence, and H&E microscopy. Single-cell RNA sequencing was also conducted on a subset of samples (n = 3). Intrahepatic triglyceride content was assessed via MRI and tissue histology. Mouse models of hepatic steatosis were used to investigate observations made from human liver tissue. Results: We observed variable degrees of liver steatosis with minimal fibrosis in our participants. Single-cell RNA sequencing revealed four macrophage clusters that exist in the human fatty liver encompassing Kupffer cells and monocyte-derived macrophages (MdMs). The genes expressed in these macrophage subsets were similar to those observed in mouse models of MAFLD. Hepatic CD14+ monocyte/macrophage number correlated with the degree of steatosis. Using mouse models of early liver steatosis, we demonstrate that recruitment of MdMs precedes Kupffer cell loss and liver damage. Electron microscopy of isolated macrophages revealed increased lipid accumulation in MdMs, and ex vivo lipid transfer experiments suggested that MdMs may serve a distinct role in lipid uptake during MAFLD. Conclusions: The human liver in MAFLD contains macrophage subsets that align well with those that appear in mouse models of fatty liver disease. Recruited myeloid cells correlate well with the degree of liver steatosis in humans. MdMs appear to participate in lipid uptake during early stages of MALFD. Impact and implications: Metabolic dysfunction associated fatty liver disease (MAFLD) is extremely common; however, the early inflammatory responses that occur in human disease are not well understood. In this study, we investigated macrophage heterogeneity in human livers during early MAFLD and demonstrated that similar shifts in macrophage subsets occur in human disease that are similar to those seen in preclinical models. These findings are important as they establish a translational link between mouse and human models of disease, which is important for the development and testing of new therapeutic approaches for MAFLD.

2.
Cell Rep ; 39(4): 110733, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476997

RESUMO

Hepatic gluconeogenesis from amino acids contributes significantly to diabetic hyperglycemia, but the molecular mechanisms involved are incompletely understood. Alanine transaminases (ALT1 and ALT2) catalyze the interconversion of alanine and pyruvate, which is required for gluconeogenesis from alanine. We find that ALT2 is overexpressed in the liver of diet-induced obese and db/db mice and that the expression of the gene encoding ALT2 (GPT2) is downregulated following bariatric surgery in people with obesity. The increased hepatic expression of Gpt2 in db/db liver is mediated by activating transcription factor 4, an endoplasmic reticulum stress-activated transcription factor. Hepatocyte-specific knockout of Gpt2 attenuates incorporation of 13C-alanine into newly synthesized glucose by hepatocytes. In vivo Gpt2 knockdown or knockout in liver has no effect on glucose concentrations in lean mice, but Gpt2 suppression alleviates hyperglycemia in db/db mice. These data suggest that ALT2 plays a significant role in hepatic gluconeogenesis from amino acids in diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Alanina/farmacologia , Alanina Transaminase/metabolismo , Aminoácidos/metabolismo , Animais , Diabetes Mellitus/metabolismo , Gluconeogênese , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Obesidade/metabolismo
3.
Gastroenterology ; 161(3): 968-981.e12, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34004161

RESUMO

BACKGROUND AND AIMS: Insulin resistance is a key factor in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). We evaluated the importance of subcutaneous abdominal adipose tissue (SAAT) inflammation and both plasma and SAAT-derived exosomes in regulating insulin sensitivity in people with obesity and NAFLD. METHODS: Adipose tissue inflammation (macrophage and T-cell content and expression of proinflammatory cytokines), liver and whole-body insulin sensitivity (assessed using a hyperinsulinemic-euglycemic clamp and glucose tracer infusion), and 24-hour serial plasma cytokine concentrations were evaluated in 3 groups stratified by adiposity and intrahepatic triglyceride (IHTG) content: (1) lean with normal IHTG content (LEAN; N = 14); (2) obese with normal IHTG content (OB-NL; N = 28); and (3) obese with NAFLD (OB-NAFLD; N = 28). The effect of plasma and SAAT-derived exosomes on insulin-stimulated Akt phosphorylation in human skeletal muscle myotubes and mouse primary hepatocytes was assessed in a subset of participants. RESULTS: Proinflammatory macrophages, proinflammatory CD4 and CD8 T-cell populations, and gene expression of several cytokines in SAAT were greater in the OB-NAFLD than the OB-NL and LEAN groups. However, with the exception of PAI-1, which was greater in the OB-NAFLD than the LEAN and OB-NL groups, 24-hour plasma cytokine concentration areas-under-the-curve were not different between groups. The percentage of proinflammatory macrophages and plasma PAI-1 concentration areas-under-the-curve were inversely correlated with both hepatic and whole-body insulin sensitivity. Compared with exosomes from OB-NL participants, plasma and SAAT-derived exosomes from the OB-NAFLD group decreased insulin signaling in myotubes and hepatocytes. CONCLUSIONS: Systemic insulin resistance in people with obesity and NAFLD is associated with increased plasma PAI-1 concentrations and both plasma and SAAT-derived exosomes. ClinicalTrials.gov number: NCT02706262 (https://clinicaltrials.gov/ct2/show/NCT02706262).


Assuntos
Citocinas/sangue , Exossomos/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Células T de Memória/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Obesidade/sangue , Inibidor 1 de Ativador de Plasminogênio/sangue , Gordura Subcutânea Abdominal/metabolismo , Adulto , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Células Cultivadas , Exossomos/imunologia , Feminino , Hepatócitos/metabolismo , Humanos , Insulina/sangue , Fígado/metabolismo , Macrófagos/imunologia , Masculino , Células T de Memória/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/diagnóstico , Obesidade/imunologia , Obesidade/fisiopatologia , Gordura Subcutânea Abdominal/imunologia , Técnicas de Cultura de Tecidos
4.
Sci Rep ; 10(1): 3417, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099031

RESUMO

Insulin resistance increases patients' risk of developing type 2 diabetes (T2D), non-alcoholic steatohepatitis (NASH) and a host of other comorbidities including cardiovascular disease and cancer. At the molecular level, insulin exerts its function through the insulin receptor (IR), a transmembrane receptor tyrosine kinase. Data from human genetic studies have shown that Grb14 functions as a negative modulator of IR activity, and the germline Grb14-knockout (KO) mice have improved insulin signaling in liver and skeletal muscle. Here, we show that Grb14 knockdown in liver, white adipose tissues, and heart with an AAV-shRNA (Grb14-shRNA) improves glucose homeostasis in diet-induced obese (DIO) mice. A previous report has shown that germline deletion of Grb14 in mice results in cardiac hypertrophy and impaired systolic function, which could severely limit the therapeutic potential of targeting Grb14. In this report, we demonstrate that there are no significant changes in cardiac function as measured by echocardiography in the Grb14-knockdown mice fed a high-fat diet for a period of four months. While additional studies are needed to further confirm the efficacy and to de-risk potential negative cardiac effects in preclinical models, our data support the therapeutic strategy of inhibiting Grb14 to treat diabetes and related conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Técnicas de Silenciamento de Genes , Insulina/genética , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo
5.
Nat Metab ; 1(1): 86-97, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31528845

RESUMO

Decreased adipose tissue oxygen tension and increased HIF-1α expression can trigger adipose tissue inflammation and dysfunction in obesity. Our current understanding of obesity-associated decreased adipose tissue oxygen tension is mainly focused on changes in oxygen supply and angiogenesis. Here, we demonstrate that increased adipocyte O2 demand, mediated by ANT2 activity, is the dominant cause of adipocyte hypoxia. Deletion of adipocyte Ant2 improves obesity-induced intracellular adipocyte hypoxia by decreasing obesity-induced adipocyte oxygen demand, without effects on mitochondrial number or mass, or oligomycin-sensitive respiration. This led to decreased adipose tissue HIF-1α expression and inflammation with improved glucose tolerance and insulin resistance in both a preventative or therapeutic setting. Our results suggest that ANT2 may be a target for the development of insulin sensitizing drugs and that ANT2 inhibition might have clinical utility.


Assuntos
Translocador 2 do Nucleotídeo Adenina/deficiência , Adipócitos/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Resistência à Insulina/genética , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Apoptose , Fibrose , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxigênio/metabolismo
6.
J Clin Endocrinol Metab ; 102(10): 3858-3864, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938478

RESUMO

Context: Fibroblast growth factor (FGF)19 and FGF21 are secreted by the intestine and liver in response to macronutrient intake. Intestinal resection and reconstruction via bariatric surgery may alter their regulation. Objective: We tested the hypothesis that weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery, but not matched weight loss induced by laparoscopic adjustable gastric banding (LAGB), increases postprandial plasma FGF19 and FGF21 concentrations. Design: Glucose kinetics and plasma FGF19 and FGF21 responses to mixed meal ingestion and to glucose-insulin infusion during a hyperinsulinemic-euglycemic clamp procedure, with stable isotope tracer methods, were evaluated in 28 adults with obesity before and after 20% weight loss induced by RYGB (n = 16) or LAGB (n = 12). Results: LAGB- and RYGB-induced weight loss increased postprandial plasma FGF19 concentrations (P < 0.05). However, weight loss after RYGB, but not LAGB, increased postprandial plasma FGF21 concentrations (1875 ± 330 to 2976 ± 682 vs 2150 ± 310 and 1572 ± 265 pg/mL × 6 hours, respectively). The increase in plasma FGF21 occurred ∼2 hours after the peak in delivery of ingested glucose into systemic circulation. Glucose-insulin infusion increased plasma FGF21, but not FGF19, concentrations. The increase in plasma FGF21 during glucose-insulin infusion was greater after than before weight loss in both surgery groups without a difference between groups, whereas plasma FGF19 was not affected by either procedure. Conclusions: RYGB-induced weight loss has unique effects on postprandial FGF21 metabolism, presumably due to rapid delivery of ingested macronutrients to the small intestine and delivery of glucose to the liver.


Assuntos
Anastomose em-Y de Roux , Fatores de Crescimento de Fibroblastos/sangue , Derivação Gástrica/métodos , Obesidade Mórbida/cirurgia , Período Pós-Prandial , Adulto , Feminino , Gastroplastia/métodos , Humanos , Masculino , Refeições , Pessoa de Meia-Idade , Obesidade Mórbida/sangue , Obesidade Mórbida/metabolismo , Redução de Peso/fisiologia
7.
Physiol Rep ; 4(11)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27252251

RESUMO

Dietary fish oil-derived n-3 PUFA supplementation can increase muscle mass, reduce oxygen demand during physical activity, and improve physical function (muscle strength and power, and endurance) in people. The results from several studies conducted in animals suggest that the anabolic and performance-enhancing effects of n-3 PUFA are at least in part transcriptionally regulated. The effect of n-3 PUFA therapy on the muscle transcriptome in people is unknown. In this study, we used muscle biopsy samples collected during a recently completed randomized controlled trial that found that n-3 PUFA therapy increased muscle mass and function in older adults to provide a comprehensive assessment of the effect of n-3 PUFA therapy on the skeletal muscle gene expression profile in these people. Using the microarray technique, we found that several pathways involved in regulating mitochondrial function and extracellular matrix organization were increased and pathways related to calpain- and ubiquitin-mediated proteolysis and inhibition of the key anabolic regulator mTOR were decreased by n-3 PUFA therapy. However, the effect of n-3 PUFA therapy on the expression of individual genes involved in regulating mitochondrial function and muscle growth, assessed by quantitative RT-PCR, was very small. These data suggest that n-3 PUFA therapy results in small but coordinated changes in the muscle transcriptome that may help explain the n-3 PUFA-induced improvements in muscle mass and function.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Resultado do Tratamento
8.
Am J Clin Nutr ; 102(1): 115-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25994567

RESUMO

BACKGROUND: Age-associated declines in muscle mass and function are major risk factors for an impaired ability to carry out activities of daily living, falls, prolonged recovery time after hospitalization, and mortality in older adults. New strategies that can slow the age-related loss of muscle mass and function are needed to help older adults maintain adequate performance status to reduce these risks and maintain independence. OBJECTIVE: We evaluated the efficacy of fish oil-derived n-3 (ω-3) PUFA therapy to slow the age-associated loss of muscle mass and function. DESIGN: Sixty healthy 60-85-y-old men and women were randomly assigned to receive n-3 PUFA (n = 40) or corn oil (n = 20) therapy for 6 mo. Thigh muscle volume, handgrip strength, one-repetition maximum (1-RM) lower- and upper-body strength, and average power during isokinetic leg exercises were evaluated before and after treatment. RESULTS: Forty-four subjects completed the study [29 subjects (73%) in the n-3 PUFA group; 15 subjects (75%) in the control group]. Compared with the control group, 6 mo of n-3 PUFA therapy increased thigh muscle volume (3.6%; 95% CI: 0.2%, 7.0%), handgrip strength (2.3 kg; 95% CI: 0.8, 3.7 kg), and 1-RM muscle strength (4.0%; 95% CI: 0.8%, 7.3%) (all P < 0.05) and tended to increase average isokinetic power (5.6%; 95% CI: -0.6%, 11.7%; P = 0.075). CONCLUSION: Fish oil-derived n-3 PUFA therapy slows the normal decline in muscle mass and function in older adults and should be considered a therapeutic approach for preventing sarcopenia and maintaining physical independence in older adults. This study was registered at clinicaltrials.gov as NCT01308957.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Óleos de Peixe/administração & dosagem , Força Muscular/efeitos dos fármacos , Atividades Cotidianas , Tecido Adiposo/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Composição Corporal , Peso Corporal/efeitos dos fármacos , Método Duplo-Cego , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Sarcopenia/prevenção & controle , Resultado do Tratamento
9.
J Clin Endocrinol Metab ; 99(7): E1306-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24694337

RESUMO

CONTEXT: Sexual dimorphism in plasma triglyceride (TG) metabolism is well established but it is unclear to what extent it is driven by differences in the sex hormone milieu. RESULTS from previous studies evaluating the effects of sex steroids on plasma TG homeostasis are inconclusive because they relied on orally administered synthetic hormone preparations or evaluated only plasma lipid concentrations but not kinetics. OBJECTIVE: The purpose of this study was to evaluate the effects of systemically delivered 17ß-estradiol, progesterone, and T on very low density lipoprotein-triglyceride (VLDL-TG) concentration and kinetics in postmenopausal women. SETTING AND DESIGN: VLDL-TG concentration and kinetics were evaluated by using stable isotope-labeled tracer techniques in four groups of postmenopausal women (n = 27 total) who were studied before and after treatment with either 17ß-estradiol (0.1 mg/d via continuous delivery skin patch), progesterone (100 mg/d via vaginal insert) and T (12.5 mg/d via skin gel), or no intervention (control group). RESULTS: VLDL-TG concentration and kinetics were unchanged in the control group and not altered by T and progesterone administration. Estradiol treatment, in contrast, reduced VLDL-TG concentration by approximately 30% due to accelerated VLDL-TG plasma clearance (25.1 ± 2.5 vs. 17.4 ± 2.7 mL/min; P < .01). CONCLUSIONS: Estradiol, but not progesterone or T, is a major regulator of VLDL-TG metabolism.


Assuntos
Estradiol/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas VLDL/metabolismo , Progesterona/administração & dosagem , Testosterona/administração & dosagem , Triglicerídeos/metabolismo , Administração Cutânea , Administração Intravaginal , Disponibilidade Biológica , Estradiol/sangue , Estradiol/farmacocinética , Terapia de Reposição de Estrogênios , Feminino , Humanos , Insulina/sangue , Cinética , Pessoa de Meia-Idade , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/metabolismo , Progesterona/sangue , Progesterona/farmacocinética , Testosterona/sangue , Testosterona/farmacocinética
10.
Obesity (Silver Spring) ; 22(2): 435-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23836730

RESUMO

OBJECTIVE: Overfeeding is associated with insulin resistance. Studies on animals suggest this is likely due to disruption of fatty acid metabolism and increased plasma free fatty acid (FFA) availability during the night. We tested the hypothesis that overfeeding induces insulin resistance and increases nocturnal but not daytime plasma FFA availability in human subjects. DESIGN AND METHODS: We measured plasma glucose, insulin, and FFA concentrations hourly for 24 h during a day of isocaloric feeding and a day of hypercaloric feeding (30% calorie excess) in 8 overweight and obese, nondiabetic men (age: 38±3 years; body mass index: 34±2 kg/m²). RESULTS: Overfeeding had no effect on daytime plasma glucose, insulin, and FFA concentrations compared to isocaloric feeding, but increased nocturnal glucose (P = 0.007) and insulin (P = 0.003) concentrations and decreased nocturnal FFA concentration (P = 0.006). The homeostasis model assessment of insulin resistance score was ∼30% greater the morning after hypercaloric than isocaloric feeding (P = 0.040). CONCLUSIONS: One day of overfeeding has no effect on daytime plasma glucose and FFA concentrations but increases nocturnal plasma glucose and insulin concentrations, whereas nocturnal plasma FFA availability is reduced. The acute overfeeding-induced development of insulin resistant glucose metabolism therefore does not appear to be directly mediated by plasma FFA availability.


Assuntos
Ácidos Graxos não Esterificados/sangue , Hiperglicemia/etiologia , Hiperinsulinismo/etiologia , Hiperfagia/fisiopatologia , Resistência à Insulina , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Tecido Adiposo/metabolismo , Adulto , Alostase , Glicemia , Índice de Massa Corporal , Ritmo Circadiano , Ácidos Graxos não Esterificados/metabolismo , Homeostase , Humanos , Hiperfagia/sangue , Hiperfagia/metabolismo , Insulina/sangue , Fígado/metabolismo , Masculino , Músculos/metabolismo , Obesidade/sangue , Obesidade/metabolismo , Sobrepeso/sangue , Sobrepeso/metabolismo , Lanches
11.
J Clin Endocrinol Metab ; 99(1): 256-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203065

RESUMO

CONTEXT: The effect of the female sex steroids, estradiol and progesterone, on muscle protein turnover is unclear. Therefore, it is unknown whether the changes in the hormonal milieu throughout the life span in women contribute to the changes in muscle protein turnover and muscle mass (eg, age associated muscle loss). OBJECTIVE: The objective of this study was to provide a comprehensive evaluation of the effect of sex hormones on muscle protein synthesis and gene expression of growth-regulatory factors [ie, myogenic differentiation 1 (MYOD1), myostatin (MSTN), follistatin (FST), and forkhead box O3 (FOXO3)]. SUBJECTS AND DESIGN: We measured the basal rate of muscle protein synthesis and the expression of muscle growth-regulatory genes in 12 premenopausal women and four groups of postmenopausal women (n=24 total) who were studied before and after treatment with T, estradiol, or progesterone or no intervention (control group). All women were healthy, and pre- and postmenopausal women were carefully matched on body mass, body composition, and insulin sensitivity. RESULTS: The muscle protein fractional synthesis rate was approximately 20% faster, and MYOD1, FST, and FOXO3 mRNA expressions were approximately 40%-90% greater (all P<.05) in postmenopausal than premenopausal women. In postmenopausal women, both T and progesterone treatment increased the muscle protein fractional synthesis rate by approximately 50% (both P<.01), whereas it was not affected by estradiol treatment and was unchanged in the control group. Progesterone treatment increased MYOD1 mRNA expression (P<.05) but had no effect on MSTN, FST, and FOXO3 mRNA expression. T and estradiol treatment had no effect on skeletal muscle MYOD1, MSTN, FST, and FOXO3 mRNA expression. CONCLUSION: Muscle protein turnover is faster in older, postmenopausal women compared with younger, premenopausal women, but these age-related differences do not appear to be explained by the age- and menopause-related changes in the plasma sex hormone milieu.


Assuntos
Estradiol/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Progesterona/administração & dosagem , Testosterona/administração & dosagem , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Estradiol/sangue , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/sangue , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/genética , Pós-Menopausa/metabolismo , Pré-Menopausa/efeitos dos fármacos , Pré-Menopausa/genética , Pré-Menopausa/metabolismo , Progesterona/sangue , Testosterona/sangue
12.
Clin Sci (Lond) ; 121(6): 267-78, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21501117

RESUMO

Increased dietary LCn-3PUFA (long-chain n-3 polyunsaturated fatty acid) intake stimulates muscle protein anabolism in individuals who experience muscle loss due to aging or cancer cachexia. However, it is not known whether LCn-3PUFAs elicit similar anabolic effects in healthy individuals. To answer this question, we evaluated the effect of 8 weeks of LCn-3PUFA supplementation (4 g of Lovaza®/day) in nine 25-45-year-old healthy subjects on the rate of muscle protein synthesis (by using stable isotope-labelled tracer techniques) and the activation (phosphorylation) of elements of the mTOR (mammalian target of rapamycin)/p70S6K (p70 S6 kinase) signalling pathway during basal post-absorptive conditions and during a hyperinsulinaemic-hyperaminoacidaemic clamp. We also measured the concentrations of protein, RNA and DNA in muscle to obtain indices of the protein synthetic capacity, translational efficiency and cell size. Neither the basal muscle protein fractional synthesis rate nor basal signalling element phosphorylation changed in response to LCn-3PUFA supplementation, but the anabolic response to insulin and amino acid infusion was greater after LCn-3PUFA [i.e. the muscle protein fractional synthesis rate during insulin and amino acid infusion increased from 0.062±0.004 to 0.083±0.007%/h and the phospho-mTOR (Ser2448) and phospho-p70S6K (Thr389) levels increased by ∼50%; all P<0.05]. In addition, the muscle protein concentration and the protein/DNA ratio (i.e. muscle cell size) were both greater (P<0.05) after LCn-3PUFA supplementation. We conclude that LCn-3PUFAs have anabolic properties in healthy young and middle-aged adults.


Assuntos
Aminoácidos/sangue , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Hiperinsulinismo/metabolismo , Proteínas Musculares/biossíntese , Adulto , Glicemia/metabolismo , Tamanho Celular , Citocinas/sangue , Avaliação de Medicamentos/métodos , Feminino , Humanos , Insulina/sangue , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Fosfolipídeos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
13.
J Appl Physiol (1985) ; 108(2): 363-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19940095

RESUMO

The muscle protein fractional synthesis rate (FSR) is determined by monitoring the incorporation of an amino acid tracer into muscle protein during a constant-rate intravenous tracer infusion. Commonly two sequential muscle biopsies are obtained some time after starting the tracer infusion. However, other protocols, including those with an initial biopsy before starting the tracer infusion to measure the background enrichment and those with only a single biopsy after several hours of tracer infusion have been used. To assess the validity of these approaches, we compared the muscle protein FSR obtained by calculating the difference in [ring-(2)H(5)]phenylalanine and [5,5,5-(2)H(3)]leucine incorporation into muscle protein at approximately 3.5 h after starting the tracer infusion and 1) at 60 min; 2) before starting the tracer infusion (background enrichment); 3) a population average muscle protein background enrichment; and 4) by measuring the tracer incorporation into muscle protein at approximately 3.5 h assuming essentially no background enrichment. Irrespective of the tracer used, the muscle protein FSR calculated from the difference in the muscle protein labeling several hours after starting the tracer infusion and either the labeling at 60 min or the background enrichment were not different (e.g., 0.049 +/- 0.007%/h vs. 0.049 +/- 0.007%/h, respectively, with [(2)H(5)]phenylalanine; P = 0.99). However, omitting the initial biopsy and assuming no background enrichment yielded average FSR values that were approximately 15% (with [(2)H(5)]phenylalanine) to 80% (with [(2)H(3)]leucine) greater (P < or = 0.059); using a population average background enrichment reduced the difference to approximately 3% (P = 0.76) and 22% (P = 0.52) with [(2)H(5)]phenylalanine and [(2)H(3)]leucine, respectively. We conclude that during basal, postabsorptive conditions, valid muscle protein FSR values can be obtained irrespective of the timing of the initial biopsy so long as the protein labeling in two sequential biopsies is measured whereas the single biopsy approach should be avoided.


Assuntos
Biópsia/métodos , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Proteínas Sanguíneas/metabolismo , Humanos , Infusões Intravenosas , Cetoácidos/metabolismo , Cinética , Leucina/metabolismo , Leucina/farmacocinética , Masculino , Fenilalanina/sangue , Fenilalanina/metabolismo
14.
J Appl Physiol (1985) ; 107(4): 1308-15, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19644030

RESUMO

Men have more muscle than women, but most studies evaluating sex differences in muscle protein metabolism have been unable to discern sexual dimorphism in basal muscle protein turnover rates in young and middle-aged adults. We hypothesized that the anabolic response to nutritional stimuli (i.e., amino acids and insulin) would be greater in young/middle-aged men than women. We therefore measured the rates of muscle protein synthesis (MPS) in 16 healthy individuals [8 men and 8 women, matched for age (mean +/- SE: 37.7 +/- 1.5 yr) and body mass index (25.2 +/- 0.7 kg/m2)] after an overnight fast (plasma insulin approximately 5 microU/ml and plasma phenylalanine approximately 60 microM) and during a hyperinsulinemic-hyperaminoacidemic-euglycemic clamp (plasma insulin approximately 28 microU/ml; plasma phenylalanine approximately 110 microM; plasma glucose approximately 5.4 mM). The rates of MPS were not different between men and women (ANOVA main effect for sex; P = 0.49). During the clamp, the rate of MPS increased by approximately 50% (P = 0.003) with no difference in the increases from basal values between men and women (+0.019 +/- 0.004 vs. +0.018 +/- 0.010%/h, respectively; P = 0.93). There were also no differences between men and women in the basal concentrations of muscle phosphorylated Akt(Ser473), Akt(Thr308), mTOR(Ser2448), and p70s6k(Thr389) or in the hyperinsulinemia-hyperaminoacidemia-induced increases in phosphorylation of those signaling elements (P > or = 0.25). We conclude that there are no major differences in the rate of MPS and its intracellular control during basal conditions and during hyperinsulinemia-hyperaminoacidema between young and middle-aged adult men and women.


Assuntos
Hiperinsulinismo/metabolismo , Insulina/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Adulto , Glicemia/metabolismo , Composição Corporal , Feminino , Técnica Clamp de Glucose , Humanos , Hiperinsulinismo/genética , Infusões Intravenosas , Insulina/administração & dosagem , Insulina/sangue , Cinética , Leucina/sangue , Masculino , Proteínas Musculares/genética , Fenilalanina/administração & dosagem , Fenilalanina/sangue , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/biossíntese , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fatores Sexuais , Transdução de Sinais , Serina-Treonina Quinases TOR
15.
PLoS One ; 3(3): e1875, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18365020

RESUMO

Women have less muscle than men but lose it more slowly during aging. To discover potential underlying mechanism(s) for this we evaluated the muscle protein synthesis process in postabsorptive conditions and during feeding in twenty-nine 65-80 year old men (n = 13) and women (n = 16). We discovered that the basal concentration of phosphorylated eEF2(Thr56) was approximately 40% less (P<0.05) and the basal rate of MPS was approximately 30% greater (P = 0.02) in women than in men; the basal concentrations of muscle phosphorylated Akt(Thr308), p70s6k(Thr389), eIF4E(Ser209), and eIF4E-BP1(Thr37/46) were not different between the sexes. Feeding increased (P<0.05) Akt(Thr308) and p70s6k(Thr389) phosphorylation to the same extent in men and women but increased (P<0.05) the phosphorylation of eIF4E(Ser209) and eIF4E-BP1(Thr37/46) in men only. Accordingly, feeding increased MPS in men (P<0.01) but not in women. The postabsorptive muscle mRNA concentrations for myoD and myostatin were not different between sexes; feeding doubled myoD mRNA (P<0.05) and halved that of myostatin (P<0.05) in both sexes. Thus, there is sexual dimorphism in MPS and its control in older adults; a greater basal rate of MPS, operating over most of the day may partially explain the slower loss of muscle in older women.


Assuntos
Absorção Intestinal , Proteínas Musculares/biossíntese , Transdução de Sinais , Idoso , Idoso de 80 Anos ou mais , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Humanos , Masculino , Proteínas Musculares/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA