Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696466

RESUMO

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Assuntos
Herpesvirus Humano 1 , Cinesinas , Proteínas Estruturais Virais , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Animais , Transporte Axonal/fisiologia , Chlorocebus aethiops , Centrossomo/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virologia
2.
Sci Immunol ; 8(82): eade2860, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083451

RESUMO

Inborn errors of TLR3-dependent type I IFN immunity in cortical neurons underlie forebrain herpes simplex virus-1 (HSV-1) encephalitis (HSE) due to uncontrolled viral growth and subsequent cell death. We report an otherwise healthy patient with HSE who was compound heterozygous for nonsense (R422*) and frameshift (P493fs9*) RIPK3 variants. Receptor-interacting protein kinase 3 (RIPK3) is a ubiquitous cytoplasmic kinase regulating cell death outcomes, including apoptosis and necroptosis. In vitro, the R422* and P493fs9* RIPK3 proteins impaired cellular apoptosis and necroptosis upon TLR3, TLR4, or TNFR1 stimulation and ZBP1/DAI-mediated necroptotic cell death after HSV-1 infection. The patient's fibroblasts displayed no detectable RIPK3 expression. After TNFR1 or TLR3 stimulation, the patient's cells did not undergo apoptosis or necroptosis. After HSV-1 infection, the cells supported excessive viral growth despite normal induction of antiviral IFN-ß and IFN-stimulated genes (ISGs). This phenotype was, nevertheless, rescued by application of exogenous type I IFN. The patient's human pluripotent stem cell (hPSC)-derived cortical neurons displayed impaired cell death and enhanced viral growth after HSV-1 infection, as did isogenic RIPK3-knockout hPSC-derived cortical neurons. Inherited RIPK3 deficiency therefore confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons but not their production of or response to type I IFNs.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Humanos , Morte Celular , Encefalite por Herpes Simples/genética , Herpesvirus Humano 1/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
3.
Nature ; 599(7886): 662-666, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789877

RESUMO

Neurotropic alphaherpesviruses initiate infection in exposed mucosal tissues and, unlike most viruses, spread rapidly to sensory and autonomic nerves where life-long latency is established1. Recurrent infections arise sporadically from the peripheral nervous system throughout the life of the host, and invasion of the central nervous system may occur, with severe outcomes2. These viruses directly recruit cellular motors for transport along microtubules in nerve axons, but how the motors are manipulated to deliver the virus to neuronal nuclei is not understood. Here, using herpes simplex virus type I and pseudorabies virus as model alphaherpesviruses, we show that a cellular kinesin motor is captured by virions in epithelial cells, carried between cells, and subsequently used in neurons to traffic to nuclei. Viruses assembled in the absence of kinesin are not neuroinvasive. The findings explain a critical component of the alphaherpesvirus neuroinvasive mechanism and demonstrate that these viruses assimilate a cellular protein as an essential proviral structural component. This principle of viral assimilation may prove relevant to other virus families and offers new strategies to combat infection.


Assuntos
Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Cinesinas/metabolismo , Movimento , Vírion/metabolismo , Montagem de Vírus , Animais , Transporte Biológico , Capsídeo/metabolismo , Linhagem Celular , Núcleo Celular/virologia , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Neurônios/metabolismo , Neurônios/virologia , Coelhos , Suínos
4.
Curr Issues Mol Biol ; 41: 171-220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32807747

RESUMO

Herpesviruses virions are large and complex structures that deliver their genetic content to nuclei upon entering cells. This property is not unusual as many other viruses including the adenoviruses, orthomyxoviruses, papillomaviruses, polyomaviruses, and retroviruses, do likewise. However, the means by which viruses in the alphaherpesvirinae subfamily accomplish this fundamental stage of the infectious cycle is tied to their defining ability to efficiently invade the nervous system. Fusion of the viral envelope with a cell membrane results in the deposition of the capsid, along with an assortment of tegument proteins, into the cytosol. Establishment of infection requires that the capsid traverse the cytosol, dock at a nuclear pore, and inject its genome into the nucleoplasm. Accumulating evidence indicates that the capsid is not the effector of this delivery process, but is instead shepherded by tegument proteins that remain capsid bound. At the same time, tegument proteins that are released from the capsid upon entry act to increase the susceptibility of the cell to the ensuing infection. Mucosal epithelial cells and neurons are both susceptible to alphaherpesvirus infection and, together, provide the niche to which these viruses have adapted. Although much has been revealed about the functions of de novo expressed tegument proteins during the late stages of assembly and egress, this review will specifically address the roles of tegument proteins brought into the cell with the incoming virion, and our current understanding of alphaherpesvirus genome delivery to nuclei.


Assuntos
Alphaherpesvirinae/genética , Alphaherpesvirinae/patogenicidade , Citoplasma/virologia , Genoma Viral/genética , Infecções por Herpesviridae/virologia , Animais , Proteínas do Capsídeo/genética , Núcleo Celular/virologia , Humanos , Vírion/genética , Montagem de Vírus/genética , Internalização do Vírus
5.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462572

RESUMO

Upon replication in mucosal epithelia and transmission to nerve endings, capsids of herpes simplex virus 1 (HSV-1) travel retrogradely within axons to peripheral ganglia, where life-long latent infections are established. A capsid-bound tegument protein, pUL37, is an essential effector of retrograde axonal transport and also houses a deamidase activity that antagonizes innate immune signaling. In this report, we examined whether the deamidase of HSV-1 pUL37 contributes to the neuroinvasive retrograde axonal transport mechanism. We conclude that neuroinvasion is enhanced by the deamidase, but the critical contribution of pUL37 to retrograde axonal transport functions independently of this activity.IMPORTANCE Herpes simplex virus 1 invades the nervous system by entering nerve endings and sustaining long-distance retrograde axonal transport to reach neuronal nuclei in ganglia of the peripheral nervous system. The incoming viral particle carries a deamidase activity on its surface that antagonizes antiviral responses. We examined the contribution of the deamidase to the hallmark neuroinvasive property of this virus.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Transporte Axonal/fisiologia , Axônios/virologia , Capsídeo/metabolismo , Linhagem Celular , Chlorocebus aethiops , Gânglios/metabolismo , Gânglios/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/metabolismo , Humanos , Mucosa Intestinal , Neurônios/virologia , Células Vero , Proteínas Estruturais Virais/genética , Vírion/metabolismo
6.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899099

RESUMO

Herpesvirus particles have a complex architecture consisting of an icosahedral capsid that is surrounded by a lipid envelope. Connecting these two components is a layer of tegument that consists of various amounts of 20 or more proteins. The arrangement of proteins within the tegument cannot easily be assessed and instead is inferred from tegument interactions identified in reductionist models. To better understand the tegument architecture, we have developed an approach to probe capsid-tegument interactions of extracellular viral particles by encoding tobacco etch virus (TEV) protease sites in viral structural proteins, along with distinct fluorescent tags in capsid and tegument components. In this study, TEV sites were engineered within the pUL36 large tegument protein, a critical structural element that is anchored directly on the capsid surface. Purified pseudorabies virus extracellular particles were permeabilized, and TEV protease was added to selectively cleave the exposed pUL36 backbone. Interactions with the capsid were assessed in situ by monitoring the fate of the fluorescent signals following cleavage. Although several regions of pUL36 are proposed to bind capsids, pUL36 was found stably anchored to the capsid exclusively at its carboxyl terminus. Two additional tegument proteins, pUL37 and pUS3, were tethered to the capsid via pUL36, whereas the pUL16, pUL47, pUL48, and pUL49 tegument proteins were not stably bound to the capsid.IMPORTANCE Neuroinvasive alphaherpesviruses produce diseases of clinical and economic significance in humans and veterinary animals but are predominantly associated with less serious recurrent disease. Like all viruses, herpesviruses assemble a metastable particle that selectively dismantles during initial infection. This process is made more complex by the presence of a tegument layer that resides between the capsid surface and envelope. Components of the tegument are essential for particle assembly and also serve as critical effectors that promote infection upon entry into cells. How this dynamic network of protein interactions is arranged within virions is largely unknown. We present a molecular approach to dissect the tegument, and with it we begin to tease apart the protein interactions that underlie this complex layer of the virion architecture.


Assuntos
Proteínas do Capsídeo/metabolismo , Herpesvirus Suídeo 1/ultraestrutura , Proteínas Estruturais Virais/metabolismo , Estruturas Virais , Animais , Linhagem Celular , Ligação Proteica , Proteólise , Suínos , Proteínas Estruturais Virais/genética
7.
PLoS Pathog ; 13(12): e1006741, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29216315

RESUMO

A hallmark property of the neurotropic alpha-herpesvirinae is the dissemination of infection to sensory and autonomic ganglia of the peripheral nervous system following an initial exposure at mucosal surfaces. The peripheral ganglia serve as the latent virus reservoir and the source of recurrent infections such as cold sores (herpes simplex virus type I) and shingles (varicella zoster virus). However, the means by which these viruses routinely invade the nervous system is not fully understood. We report that an internal virion component, the pUL37 tegument protein, has a surface region that is an essential neuroinvasion effector. Mutation of this region rendered herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) incapable of spreading by retrograde axonal transport to peripheral ganglia both in culture and animals. By monitoring the axonal transport of individual viral particles by time-lapse fluorescence microscopy, the mutant viruses were determined to lack the characteristic sustained intracellular capsid motion along microtubules that normally traffics capsids to the neural soma. Consistent with the axonal transport deficit, the mutant viruses did not reach sites of latency in peripheral ganglia, and were avirulent. Despite this, viral propagation in peripheral tissues and in cultured epithelial cell lines remained robust. Selective elimination of retrograde delivery to the nervous system has long been sought after as a means to develop vaccines against these ubiquitous, and sometimes devastating viruses. In support of this potential, we find that HSV-1 and PRV mutated in the effector region of pUL37 evoked effective vaccination against subsequent nervous system challenges and encephalitic disease. These findings demonstrate that retrograde axonal transport of the herpesviruses occurs by a virus-directed mechanism that operates by coordinating opposing microtubule motors to favor sustained retrograde delivery of the virus to the peripheral ganglia. The ability to selectively eliminate the retrograde axonal transport mechanism from these viruses will be useful in trans-synaptic mapping studies of the mammalian nervous system, and affords a new vaccination paradigm for human and veterinary neurotropic herpesviruses.


Assuntos
Transporte Axonal/fisiologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/patogenicidade , Proteínas Estruturais Virais/fisiologia , Sequência de Aminoácidos , Animais , Transporte Axonal/genética , Axônios/virologia , Gânglios/virologia , Genes Virais , Herpesvirus Humano 1/genética , Herpesvirus Suídeo 1/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Modelos Moleculares , Mutação , Neurônios/virologia , Ratos , Ratos Long-Evans , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Vacinas Virais/genética , Virulência/genética , Virulência/fisiologia , Liberação de Vírus/genética , Liberação de Vírus/fisiologia
8.
J Virol ; 88(10): 5462-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24599989

RESUMO

UNLABELLED: In cells infected with herpesviruses, two capsid-associated, or inner tegument, proteins, UL37 and UL36, control cytosolic trafficking of capsids by as yet poorly understood mechanisms. Here, we report the crystal structure of the N-terminal half of UL37 from pseudorabies virus, an alphaherpesvirus closely related to herpes simplex viruses and varicella-zoster virus. The structure--the first for any alphaherpesvirus inner tegument protein--reveals an elongated molecule of a complex architecture rich in helical bundles. To explore the function of the UL37 N terminus, we used the three-dimensional framework provided by the structure in combination with evolutionary trace analysis to pinpoint several surface-exposed regions of potential functional importance and test their importance using mutagenesis. This approach identified a novel functional region important for cell-cell spread. These results suggest a novel role for UL37 in intracellular virus trafficking that promotes spread of viral infection, a finding that expands the repertoire of UL37 functions. Supporting this, the N terminus of UL37 shares structural similarity with cellular multisubunit tethering complexes (MTCs), which control vesicular trafficking in eukaryotic cells by tethering transport vesicles to their destination membranes. Our results suggest that UL37 could be the first viral MTC mimic and provide a structural rationale for the importance of UL37 for viral trafficking. We propose that herpesviruses may have co-opted the MTC functionality of UL37 to bring capsids to cytoplasmic budding destinations and further on to cell junctions for spread to nearby cells. IMPORTANCE: To move within an infected cell, viruses encode genes for proteins that interact with host trafficking machinery. In cells infected with herpesviruses, two capsid-associated proteins control the cytosolic movement of capsids by as yet poorly understood mechanisms. Here, we report the crystal structure for the N-terminal half of one of these proteins, UL37. Structure-based mutagenesis revealed a novel function for UL37 in virus trafficking to cell junctions for cell-cell spread. The unexpected structural similarity to components of cellular multisubunit tethering complexes, which control vesicular traffic, suggests that UL37 could be the first viral MTC mimic and provides a structural basis for the importance of UL37 for virus trafficking.


Assuntos
Herpesvirus Suídeo 1/química , Herpesvirus Suídeo 1/fisiologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Liberação de Vírus , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Análise Mutacional de DNA , Herpesvirus Suídeo 1/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Proteínas Estruturais Virais/genética
9.
Cell Host Microbe ; 13(2): 193-203, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23414759

RESUMO

Microtubule transport of herpesvirus capsids from the cell periphery to the nucleus is imperative for viral replication and, in the case of many alphaherpesviruses, transmission into the nervous system. Using the neuroinvasive herpesvirus, pseudorabies virus (PRV), we show that the viral protein 1/2 (VP1/2) tegument protein associates with the dynein/dynactin microtubule motor complex and promotes retrograde microtubule transport of PRV capsids. Functional activation of VP1/2 requires binding to the capsid protein pUL25 or removal of the capsid-binding domain. A proline-rich sequence within VP1/2 is required for the efficient interaction with the dynein/dynactin microtubule motor complex as well as for PRV virulence and retrograde axon transport in vivo. Additionally, in the absence of infection, functionally active VP1/2 is sufficient to move large surrogate cargoes via the dynein/dynactin microtubule motor complex. Thus, VP1/2 tethers PRV capsids to dynein/dynactin to enhance microtubule transport, neuroinvasion, and pathogenesis.


Assuntos
Dineínas/metabolismo , Herpesvirus Suídeo 1/patogenicidade , Células Receptoras Sensoriais/virologia , Proteínas Estruturais Virais/metabolismo , Animais , Axônios/metabolismo , Chlorocebus aethiops , Coinfecção/metabolismo , Coinfecção/virologia , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Herpesvirus Suídeo 1/metabolismo , Humanos , Imunoprecipitação , Masculino , Camundongos , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/virologia , Prolina/metabolismo , Mapeamento de Interação de Proteínas , Transporte Proteico , Pseudorraiva/metabolismo , Pseudorraiva/patologia , Pseudorraiva/virologia , Ratos , Ratos Long-Evans , Células Receptoras Sensoriais/metabolismo , Células Vero , Ensaio de Placa Viral , Proteínas Estruturais Virais/genética
10.
J Virol ; 84(24): 13019-30, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20810730

RESUMO

Neurotropic herpesviruses depend on long-distance axon transport for the initial establishment of latency in peripheral ganglia (retrograde transport) and for viral spread in axons to exposed body surfaces following reactivation (anterograde transport). Images of neurons infected with herpes simplex virus type 1 (HSV-1), acquired using electron microscopy, have led to a debate regarding why different types of viral structures are seen in axons and which of these particles are relevant to the axon transport process. In this study, we applied time-lapse fluorescence microscopy to image HSV-1 virion components actively translocating to distal axons in primary neurons and neuronal cell lines. Key to these findings, only a small fraction of viral particles were engaged in anterograde transport during the egress phase of infection at any given time. By selective analysis of the composition of the subpopulation of actively transporting capsids, a link between transport of fully assembled HSV-1 virions and the neuronal secretory pathway was identified. Last, we have evaluated the seemingly opposing findings made in previous studies of HSV-1 axon transport in fixed cells and demonstrate a limitation to assessing the composition of individual HSV-1 particles using antibody detection methods.


Assuntos
Transporte Axonal , Axônios/virologia , Herpes Simples/virologia , Neurônios/virologia , Simplexvirus/fisiologia , Vírion/fisiologia , Animais , Western Blotting , Capsídeo/metabolismo , Células Cultivadas , Embrião de Galinha , Chlorocebus aethiops , Imunofluorescência , Microscopia Eletrônica , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Proteínas do Envelope Viral/metabolismo , Replicação Viral
11.
PLoS Pathog ; 5(4): e1000387, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19381253

RESUMO

The neuroinvasive property of several alpha-herpesviruses underlies an uncommon infectious process that includes the establishment of life-long latent infections in sensory neurons of the peripheral nervous system. Several herpesvirus proteins are required for replication and dissemination within the nervous system, indicating that exploiting the nervous system as a niche for productive infection requires a specialized set of functions encoded by the virus. Whether initial entry into the nervous system from peripheral tissues also requires specialized viral functions is not known. Here we show that a conserved deubiquitinase domain embedded within a pseudorabies virus structural protein, pUL36, is essential for initial neural invasion, but is subsequently dispensable for transmission within and between neurons of the mammalian nervous system. These findings indicate that the deubiquitinase contributes to neurovirulence by participating in a previously unrecognized initial step in neuroinvasion.


Assuntos
Endopeptidases/fisiologia , Herpesvirus Suídeo 1/enzimologia , Pseudorraiva/virologia , Células Receptoras Sensoriais/virologia , Ubiquitina/metabolismo , Proteínas Estruturais Virais/fisiologia , Animais , Câmara Anterior/virologia , Transporte Axonal/fisiologia , Chlorocebus aethiops , Endopeptidases/genética , Infecções Oculares Virais/virologia , Herpesvirus Suídeo 1/genética , Masculino , Pseudorraiva/fisiopatologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Proteases Específicas de Ubiquitina , Células Vero , Proteínas Estruturais Virais/genética
12.
Traffic ; 9(9): 1458-70, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18564370

RESUMO

Axonal transport is essential for the successful establishment of neuroinvasive herpesvirus infections in peripheral ganglia (retrograde transport) and the subsequent spread to exposed body surfaces following reactivation from latency (anterograde transport). We examined two components of pseudorabies virus (US3 and UL13), both of which are protein kinases, as potential regulators of axon transport. Following replication of mutant viruses lacking kinase activity, newly assembled capsids displayed an increase in retrograde motion that prevented efficient delivery of capsids to the distal axon. The aberrant increase in retrograde motion was accompanied by loss of a viral membrane marker from the transported capsids, indicating that the viral kinases allow for efficient anterograde transport by stabilizing membrane-capsid interactions during the long transit from the neuron cell body to the distal axon.


Assuntos
Transporte Axonal , Axônios/virologia , Capsídeo/enzimologia , Herpesviridae , Proteínas Quinases/metabolismo , Células Receptoras Sensoriais/virologia , Animais , Axônios/metabolismo , Linhagem Celular , Embrião de Galinha , Células Epiteliais/virologia , Herpesviridae/enzimologia , Herpesviridae/genética , Herpesviridae/patogenicidade , Mutagênese , Proteínas Quinases/genética , Transporte Proteico , Suínos
13.
J Virol ; 80(22): 11235-40, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16971439

RESUMO

Alphaherpesvirus infection of the mammalian nervous system is dependent upon the long-distance intracellular transport of viral particles in axons. How viral particles are effectively trafficked in axons to either sensory ganglia following initial infection or back out to peripheral sites of innervation following reactivation remains unknown. The mechanism of axonal transport has, in part, been obscured by contradictory findings regarding whether capsids are transported in axons in the absence of membrane components or as enveloped virions. By imaging actively translocated viral structural components in living peripheral neurons, we demonstrate that herpesviruses use two distinct pathways to move in axons. Following entry into cells, exposure of the capsid to the cytosol resulted in efficient retrograde transport to the neuronal cell body. In contrast, progeny virus particles moved in the anterograde direction following acquisition of virion envelope proteins and membrane lipids. Retrograde transport was effectively shut down in this membrane-bound state, allowing for efficient delivery of progeny viral particles to the distal axon. Notably, progeny viral particles that lacked a membrane were misdirected back to the cell body. These findings show that cytosolic capsids are trafficked to the neuronal cell body and that viral egress in axons occurs after capsids are enshrouded in a membrane envelope.


Assuntos
Transporte Axonal , Herpesviridae/metabolismo , Neurônios/virologia , Animais , Células Cultivadas , Galinhas , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Microscopia de Vídeo , Movimento (Física) , Nucleocapsídeo/metabolismo , Coloração e Rotulagem , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Proteína Vermelha Fluorescente
14.
Curr Biol ; 12(7): 606-8, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11937032

RESUMO

Over the past decade, it has become clear that neural stem cells in the adult mammalian brain continuously generate new neurons, predominantly in the hippocampus and olfactory bulb. However, the central issue of whether these new neurons participate in functional synaptic circuitry has yet to be resolved. Here, we use virus-based transsynaptic neuronal tracing and c-Fos mapping of odor-induced neuronal activity to demonstrate that neurons generated in the adult functionally integrate into the synaptic circuitry of the brain.


Assuntos
Hipocampo/citologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Células-Tronco/fisiologia , Animais , Biomarcadores , Diferenciação Celular , Toxina da Cólera/metabolismo , Giro Denteado/citologia , Herpesvirus Suídeo 1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Neurônios/virologia , Bulbo Olfatório/fisiologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/virologia , Sinapses/metabolismo , Sinapses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA