Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 32(5): 2381-2394, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29269399

RESUMO

Stroke continues to be a leading cause of death and disability worldwide, yet effective treatments are lacking. Previous studies have indicated that stem-cell transplantation could be an effective treatment. However, little is known about the direct impact of transplanted cells on injured brain tissue. We wanted to help fill this knowledge gap and investigated effects of hematopoietic stem/progenitor cells (HSPCs) on the cerebral microcirculation after ischemia-reperfusion injury (I/RI). Treatment of HSPCs in I/RI for up to 2 wk after cerebral I/RI led to decreased mortality rate, decreased infarct volume, improved functional outcome, reduced microglial activation, and reduced cerebral leukocyte adhesion. Confocal microscopy and fluorescence-activated cell sorting analyses showed transplanted HSPCs emigrate preferentially into ischemic cortex brain parenchyma. We isolated migrated HSPCs from the brain; using RNA sequencing to investigate the transcriptome, we found metallothionein (MT, particularly MT-I) transcripts were dramatically up-regulated. Finally, to confirm the significance of MT, we exogenously administered MT-I after cerebral I/RI and found that it produced neuroprotection in a manner similar to HSPC treatment. These findings provide novel evidence that the mechanism through which HSPCs promote repair after stroke maybe via direct action of HSPC-derived MT-I and could therefore be exploited as a useful therapeutic strategy for stroke.-Smith, H. K., Omura, S., Vital, S. A., Becker, F., Senchenkova, E. Y., Kaur, G., Tsunoda, I., Peirce, S. M., Gavins, F. N. E. Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke.


Assuntos
Circulação Cerebrovascular , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Metalotioneína/biossíntese , Microcirculação , Acidente Vascular Cerebral , Animais , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
2.
J Cereb Blood Flow Metab ; 35(7): 1090-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25966948

RESUMO

Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Encéfalo/patologia , Rastreamento de Células/métodos , Neuroimagem/métodos , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Lesões Encefálicas/diagnóstico , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
3.
J Neurosci Methods ; 249: 99-105, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25936850

RESUMO

BACKGROUND: Stroke is the third leading cause of death and the leading cause of long-term disability in North America. On average, someone in the US has a stroke every 45 s, and worldwide, stroke claims 15 million lives each year. Therefore, reliable stroke models are vital to the production of effective new therapies for the treatment of this devastating cerebral vascular accident. NEW METHOD: Middle cerebral artery occlusion (MCAo) is considered to be the most clinically relevant surgical model of ischemic stroke, in which a variety of methods may be employed to block the MCA (the most common being through insertion of a monofilament). In this study, we have compared two different approaches that are currently used arbitrarily in various laboratories worldwide: one involving insertion of a monofilament via the common carotid artery (Koizumi et al.) and one via the external carotid artery (Longa et al.). RESULTS AND COMPARISONS WITH EXISTING METHODS: We assessed various parameters, including: mortality rates, neurological scores, inflammation levels, cellular trafficking (using intravital microscopy) and infarct volumes in mice after using each of the two approaches. We found that the Longa method produced a greater, and robust, inflammatory response, versus the Koizumi method. CONCLUSIONS: In conclusion, we suggest that the Longa method is superior for the study of both short and long-term outcomes of ischemic stroke. These results have considerable implications on stroke model selection for researchers.


Assuntos
Infarto da Artéria Cerebral Média/cirurgia , Acidente Vascular Cerebral/cirurgia , Procedimentos Cirúrgicos Vasculares/métodos , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/etiologia , Procedimentos Cirúrgicos Vasculares/instrumentação
4.
FASEB J ; 29(5): 2161-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690650

RESUMO

Ischemia/reperfusion (I/R) injury following stroke can worsen patient outcome through excess inflammation. This study investigated the pharmacologic potential of targeting an endogenous anti-inflammatory circuit via formyl peptide receptor (FPR) 2/lipoxin receptor (ALX) (Fpr2/3 in mouse) in global cerebral I/R. Mice (C57BL/6 and Fpr2/3(-/-)) were subjected to bilateral common carotid artery occlusion, followed by reperfusion and treatment with FPR agonists: AnxA1Ac2-26 [Annexin A1 mimetic peptide (Ac-AMVSEFLKQAWFIENEEQEYVQTVK), 2.5 µg/kg] and 15-epimer-lipoxin A4 (15-epi-LXA4; FPR2/ALX specific, 12.5 and 100 ng/kg). Leukocyte-endothelial (L-E) interactions in the cerebral microvasculature were then quantified in vivo using intravital fluorescence microscopy. 15-epi-LXA4 administration at the start of reperfusion reduced L-E interactions after 40 min (which was sustained at 2 h with high-dose 15-epi-LXA4) to levels seen in sham-operated animals. AnxA1Ac2-26 treatment decreased leukocyte adhesion at 40 min and all L-E interactions at 2 h (up to 95%). Combined treatment with AnxA1Ac2-26 plus FPR antagonists t-Boc-FLFLF (250 ng/kg) or WRW4 (FPR2/ALX selective, 1.4 µg/kg) abrogated the effects of AnxA1Ac2-26 fully at 40 min. Antagonists were less effective at 2 h, which we demonstrate is likely because of their impact on early L-E interactions. Our findings indicate that FPR2/ALX activity elicits considerable control over vascular inflammatory responses during cerebral I/R and, therefore, provide evidence that targeting FPR2/ALX may be beneficial for patients who suffered from stroke.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Leucócitos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores de Formil Peptídeo/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Anexina A1/metabolismo , Western Blotting , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/prevenção & controle , Adesão Celular , Células Cultivadas , Endotélio Vascular/citologia , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Inflamação/patologia , Inflamação/prevenção & controle , Leucócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Microvasos/metabolismo , Microvasos/patologia , Neutrófilos/citologia , Neutrófilos/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
5.
FASEB J ; 26(6): 2239-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426119

RESUMO

Substantial developments in the field of stem cell research point toward novel therapies for the treatment of diseases such as stroke. This review covers the establishment of tissue damage in stroke and the status of current therapies. We evaluate stem cell therapy with respect to other treatments, including clinical, preclinical, and failed, and provide a comprehensive account of stem cell clinical trials for stroke therapy currently underway. Finally, we describe mechanisms through which stem cells improve outcome in experimental stroke as well as potential pitfalls this basic research has identified.


Assuntos
Acidente Vascular Cerebral/terapia , Animais , Ensaios Clínicos Fase I como Assunto , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais , Neurogênese , Traumatismo por Reperfusão/fisiopatologia , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/uso terapêutico
6.
Trends Pharmacol Sci ; 32(2): 90-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21185610

RESUMO

The melanocortin receptors are a subfamily of G-protein-coupled, rhodopsin-like receptors that are rapidly being acknowledged as an extremely promising target for pharmacological intervention in a variety of different inflammatory pathologies, including stroke. Stroke continues to be a leading cause of death worldwide, with risk factors including smoking, diabetes, hypertension and obesity. The pathophysiology of stroke is highly complex: reintroduction of blood flow to the infarcted brain region is paramount in limiting ischaemic damage caused by stroke, yet a concomitant inflammatory response can compound tissue damage. The possibilities of pro-resolving treatments that target this inflammatory response have only recently begun to be explored. This review discusses the endogenous roles of the melanocortin system in reducing characterized aspects of inflammation, and how these, together with potent neuroprotective actions, suggest its potential as a therapeutic target in stroke.


Assuntos
Terapia de Alvo Molecular , Receptores de Melanocortina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Humanos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA