Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Sci Adv ; 10(27): eadg3747, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959314

RESUMO

Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.


Assuntos
Adjuvantes Imunológicos , Pirimidinas , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Humanos , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/metabolismo , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Receptor 7 Toll-Like/agonistas , Pirimidinas/farmacologia , Pirimidinas/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Imidazóis/farmacologia , Imidazóis/química , Células THP-1 , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , COVID-19/virologia , COVID-19/imunologia , NF-kappa B/metabolismo , Feminino , Descoberta de Drogas/métodos , Imunidade Inata/efeitos dos fármacos
2.
Res Sq ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39011110

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38896024

RESUMO

Growing evidence has linked inflammatory processes to cognitive decline and dementia. This work examines whether an epigenetic marker of C-reactive protein (CRP), a common clinical inflammatory biomarker, may mediate the relationship between educational attainment and cognition. We first evaluated whether 53 previously reported CRP-associated DNA methylation sites (CpGs) are associated with CRP, both individually and aggregated into a methylation risk score (MRSCRP), in 3 298 participants from the Health and Retirement Study (HRS, mean age = 69.7 years). Forty-nine CpGs (92%) were associated with the natural logarithm of CRP in HRS after adjusting for age, sex, smoking, BMI, genetic ancestry, and white blood cell counts (p < .05), and each standard deviation increase in MRSCRP was associated with a 0.38 unit increase in lnCRP (p = 4.02E-99). In cross-sectional analysis, for each standard deviation increase in MRSCRP, total memory score and total cognitive score decreased, on average, by 0.28 words and 0.43 items, respectively (p < .001). Further, MRSCRP mediated 6.9% of the relationship between high school education and total memory score in a model adjusting for age, sex, and genetic ancestry (p < .05); this was attenuated to 2.4% with additional adjustment for marital status, APOE ε4 status, health behaviors, and comorbidities (p < .05). Thus, CRP-associated methylation may partially mediate the relationship between education and cognition at older ages. Further research is warranted to determine whether DNA methylation at these sites may improve current prediction models for cognitive impairment in older adults.


Assuntos
Proteína C-Reativa , Cognição , Ilhas de CpG , Metilação de DNA , Escolaridade , Humanos , Masculino , Feminino , Idoso , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Cognição/fisiologia , Ilhas de CpG/genética , Estudos Transversais , Biomarcadores/sangue , Disfunção Cognitiva/genética , Pessoa de Meia-Idade
4.
BMC Med Genomics ; 17(1): 146, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802805

RESUMO

BACKGROUND: Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. METHODS: We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = 2,531) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether demographic factors including age, sex, and educational attainment modified the relationships between epigenetic age acceleration and blood lipids. RESULTS: After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05), although the effect sizes were relatively small (e.g., < 7 mg/dL of TC per standard deviation in epigenetic age acceleration). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjustment for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. CONCLUSION: Multiple measures of epigenetic age acceleration are associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or non-linear relationships between age and these lipids, as both TC and LDL-C decrease faster at older ages.


Assuntos
Envelhecimento , Epigênese Genética , Lipídeos , Humanos , Idoso , Feminino , Masculino , Lipídeos/sangue , Envelhecimento/sangue , Envelhecimento/genética , Estados Unidos , Metilação de DNA , Estudos Transversais , Pessoa de Meia-Idade
5.
Epigenetics ; 19(1): 2323907, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38431869

RESUMO

Long-term psychosocial stress is strongly associated with negative physical and mental health outcomes, as well as adverse health behaviours; however, little is known about the role that stress plays on the epigenome. One proposed mechanism by which stress affects DNA methylation is through health behaviours. We conducted an epigenome-wide association study (EWAS) of cumulative psychosocial stress (n = 2,689) from the Health and Retirement Study (mean age = 70.4 years), assessing DNA methylation (Illumina Infinium HumanMethylationEPIC Beadchip) at 789,656 CpG sites. For identified CpG sites, we conducted a formal mediation analysis to examine whether smoking, alcohol use, physical activity, and body mass index (BMI) mediate the relationship between stress and DNA methylation. Nine CpG sites were associated with psychosocial stress (all p < 9E-07; FDR q < 0.10). Additionally, health behaviours and/or BMI mediated 9.4% to 21.8% of the relationship between stress and methylation at eight of the nine CpGs. Several of the identified CpGs were in or near genes associated with cardiometabolic traits, psychosocial disorders, inflammation, and smoking. These findings support our hypothesis that psychosocial stress is associated with DNA methylation across the epigenome. Furthermore, specific health behaviours mediate only a modest percentage of this relationship, providing evidence that other mechanisms may link stress and DNA methylation.


Assuntos
Metilação de DNA , Epigenoma , Fumar/genética , Fumar Tabaco , Estresse Psicológico/genética
6.
Res Sq ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464171

RESUMO

Background: Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. Methods: We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = and f) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether the relationships between epigenetic age acceleration and blood lipids differ by demographic factors including age, sex, and educational attainment. Results: After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjusting for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. Conclusion: Epigenetic age acceleration, a powerful biomarker of cellular aging, is highly associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or the non-linear relationship between age and these lipids, as both TC and LDL-C decrease faster at older ages. More studies are needed to further understand the temporal relationships between epigenetic age acceleration on blood lipids and other health outcomes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37956337

RESUMO

BACKGROUND: GrimAge acceleration (GAA), an epigenetic marker that represents physiologic aging, is associated with age-related diseases including cancer and cardiovascular diseases. However, the associations between GAA and muscle mass and function are unknown. METHODS: We estimated measures of GAA in 1 118 Black and White participants from the Coronary Artery Risk Development in Young Adults (CARDIA) Study at exam years (Y) 15 (2000-2001) and 20 (2005-2006). Abdominal muscle composition was measured using CT scans at the Y25 (2010-2011) visit. We used multivariate regression models to examine associations of GAA estimates with muscle imaging measurements. RESULTS: In the CARDIA study, each 1-year higher GAA was associated with an average 1.1% (95% confidence interval [CI]: 0.6%, 1.5%) higher intermuscular adipose tissue (IMAT) volume for abdominal muscles. Each 1-year higher GAA was associated with an average -0.089 Hounsfield unit (HU; 95% CI: -0.146, -0.032) lower lean muscle attenuation and an average -0.049 HU (95% CI: -0.092, -0.007) lower IMAT attenuation for abdominal muscles. Stratified analyses showed that GAA was more strongly associated with higher abdominal muscle IMAT volume in females and significantly associated with lower lean muscle attenuation for White participants only. CONCLUSIONS: Higher GAA is associated with higher abdominal muscle IMAT volume and lower lean muscle attenuation in a midlife population.


Assuntos
Gordura Abdominal , Vasos Coronários , Feminino , Humanos , Músculos , Envelhecimento/genética , Epigênese Genética , Músculo Esquelético/diagnóstico por imagem
8.
Med Dosim ; 49(1): 50-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38103956

RESUMO

To determine the necessity of the first week CT simulation rescan of pencil beam scanning (PBS) prostate patients requiring treatment to the pelvic lymph nodes. Patients were treated on a prospective registry trial sponsored by the Proton Collaborative Group (PCG-NCT01255748). A total of 42 patients with high-risk prostate cancer requiring treatment to the pelvic lymph nodes were evaluated in a single calendar year. The cohort consisted of a mix of intact prostate and postprostatectomy patients. Most of the patients were treated with a simultaneous integrated boost (SIB) approach for the majority of the plan. The radiation prescriptions varied depending on whether the patient had an intact prostate or prostate bed. The plan geometry consisted of two lateral beams and a single field optimization (SFO) dosimetric matching technique using pencil beam scanning proton therapy. An in-house protocol was established wherein all high-risk prostate patients had at least 1 rescan evaluation performed during the first 5 ± 2 fractions, which was used to determine whether the nominal approved plan was robust to daily setup uncertainties and anatomical variations. If the evaluation failed clinical analysis, an adaptive replan was created. If 5% or more of the evaluated rescans resulted in a qualified adaptive plan, the planning technique would be considered insufficient. Of the 42 patients investigated, five (11.9%) required an adaptive plan. As it turned out, all five of these patients would have been rescanned within the first 5 fractions of treatment, independent of the established rescan protocol, due to a physician, dosimetrist, or therapist requesting a rescan to investigate specific areas of concern regarding setup or anatomic changes. Of the 5 adaptive plans, only one (2.4%) meets the criteria of a qualified adaptive plan. Our findings substantiated that this policy of a planned rescan with the 5th fraction was no longer necessary, the dosimetric technique had proven to be robust, and moving forward we will only perform these rescans if there is a significant issue with daily setups or observed changes in anatomy.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Masculino , Linfonodos , Próstata/patologia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
9.
BMC Med ; 21(1): 443, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968697

RESUMO

BACKGROUND: Metabolite signatures of long-term alcohol consumption are lacking. To better understand the molecular basis linking alcohol drinking and cardiovascular disease (CVD), we investigated circulating metabolites associated with long-term alcohol consumption and examined whether these metabolites were associated with incident CVD. METHODS: Cumulative average alcohol consumption (g/day) was derived from the total consumption of beer, wine, and liquor on average of 19 years in 2428 Framingham Heart Study Offspring participants (mean age 56 years, 52% women). We used linear mixed models to investigate the associations of alcohol consumption with 211 log-transformed plasma metabolites, adjusting for age, sex, batch, smoking, diet, physical activity, BMI, and familial relationship. Cox models were used to test the association of alcohol-related metabolite scores with fatal and nonfatal incident CVD (myocardial infarction, coronary heart disease, stroke, and heart failure). RESULTS: We identified 60 metabolites associated with cumulative average alcohol consumption (p < 0.05/211 ≈ 0.00024). For example, 1 g/day increase of alcohol consumption was associated with higher levels of cholesteryl esters (e.g., CE 16:1, beta = 0.023 ± 0.002, p = 6.3e - 45) and phosphatidylcholine (e.g., PC 32:1, beta = 0.021 ± 0.002, p = 3.1e - 38). Survival analysis identified that 10 alcohol-associated metabolites were also associated with a differential CVD risk after adjusting for age, sex, and batch. Further, we built two alcohol consumption weighted metabolite scores using these 10 metabolites and showed that, with adjustment age, sex, batch, and common CVD risk factors, the two scores had comparable but opposite associations with incident CVD, hazard ratio 1.11 (95% CI = [1.02, 1.21], p = 0.02) vs 0.88 (95% CI = [0.78, 0.98], p = 0.02). CONCLUSIONS: We identified 60 long-term alcohol consumption-associated metabolites. The association analysis with incident CVD suggests a complex metabolic basis between alcohol consumption and CVD.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos Prospectivos , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Doença das Coronárias/complicações , Dieta , Fatores de Risco
10.
Am J Epidemiol ; 192(12): 1991-2005, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579321

RESUMO

Epigenetic biomarkers of accelerated aging have been widely used to predict disease risk and may enhance our understanding of biological mechanisms between early-life adversity and disparities in aging. With respect to childhood adversity, most studies have used parental education or childhood disadvantage and/or have not examined the role played by socioemotional or physical abuse and trauma in epigenetic profiles at older ages. This study leveraged data from the Multi-Ethnic Study of Atherosclerosis (MESA) on experiences of threat and deprivation in participants' early lives (i.e., before the age of 18 years) to examine whether exposure to specific dimensions of early-life adversity is associated with epigenetic profiles at older ages that are indicative of accelerated biological aging. The sample included 842 MESA respondents with DNA methylation data collected between 2010 and 2012 who answered questions on early-life adversities in a 2018-2019 telephone follow-up. We found that experiences of deprivation, but not threat, were associated with later-life GrimAge epigenetic aging signatures that were developed to predict mortality risk. Results indicated that smoking behavior partially mediates this association, which suggests that lifestyle behaviors may act as downstream mechanisms between parental deprivation in early life and accelerated epigenetic aging in later life.


Assuntos
Experiências Adversas da Infância , Aterosclerose , Humanos , Adolescente , Envelhecimento/genética , Envelhecimento/psicologia , Metilação de DNA , Epigênese Genética , Aterosclerose/genética
11.
Epidemiol Health ; 45: e2023074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37591787

RESUMO

The Epidemiologic Questionnaire (EPI-Q) was established to collect broad, uniform, self-reported health data to supplement electronic health record (EHR) and genotype information from participants in the University of Michigan (UM) Precision Health cohorts. Recruitment of EPI-Q participants, who were already enrolled in 1 of 3 ongoing UM Precision Health cohorts-the Michigan Genomics Initiative, Mental Health Biobank, and Metabolism, Endocrinology, and Diabetes cohorts-began in March 2020. Of 54,043 retrospective invitations, 5,577 individuals enrolled, representing a 10.3% response rate. Of these, 3,502 (63.7%) were female, and the average age was 56.1 years (standard deviation, 15.4). The baseline survey comprises 11 modules on topics including personal and family health history, lifestyle, and cancer screening and history. Additionally, 11 optional modules cover topics including financial toxicity, occupational exposure, and life meaning. The questions are based on standardized and validated instruments used in other cohorts, and we share resources to expedite development of similar surveys. Data are collected via the MyDataHelps platform, which enables current and future participants to share non-Michigan Medicine EHR data. Recruitment is ongoing. Cohort data are available to those with institutional review board approval; for details, contact the Data Office for Clinical and Translational Research (DataOffice@umich.edu).


Assuntos
Registros Eletrônicos de Saúde , Aplicativos Móveis , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Genótipo , Inquéritos e Questionários , Inquéritos Epidemiológicos
12.
STAR Protoc ; 4(3): 102405, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453068

RESUMO

High-throughput screening is a powerful platform that can rapidly provide valuable cytotoxic, immunological, and phenotypical information for thousands of compounds. Human peripheral blood mononuclear cells (PBMCs) cultured in autologous plasma can model the human immune response. Here, we describe a protocol to stimulate PBMCs for 72 h and measure cytokine secretion via AlphaLISA assays and cell surface activation marker expression via flow cytometry. Cryopreserved PBMCs are incubated for 72 h with various small molecule libraries and the supernatants are harvested to rapidly measure secretion levels of key cytokines (tumor necrosis factor alpha, interferon gamma, interleukin 10) via the AlphaLISA assay. Almost simultaneously, the cells can be fixated and stained using antibodies against innate immune activation markers (CD80, CD86, HLA-DR, OX40) for analysis via flow cytometry. This multiplexed readout workflow can directly aid in the phenotypic identification and discovery of novel immunomodulators and potential vaccine adjuvant candidates. For complete details on the use and execution of this protocol, please refer to Chew et al.1.


Assuntos
Agentes de Imunomodulação , Leucócitos Mononucleares , Humanos , Ensaios de Triagem em Larga Escala , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Biomarcadores/metabolismo
13.
Int J Epidemiol ; 52(5): 1579-1591, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295953

RESUMO

BACKGROUND: Previous Mendelian randomization (MR) studies using population samples (population MR) have provided evidence for beneficial effects of educational attainment on health outcomes in adulthood. However, estimates from these studies may have been susceptible to bias from population stratification, assortative mating and indirect genetic effects due to unadjusted parental genotypes. MR using genetic association estimates derived from within-sibship models (within-sibship MR) can avoid these potential biases because genetic differences between siblings are due to random segregation at meiosis. METHODS: Applying both population and within-sibship MR, we estimated the effects of genetic liability to educational attainment on body mass index (BMI), cigarette smoking, systolic blood pressure (SBP) and all-cause mortality. MR analyses used individual-level data on 72 932 siblings from UK Biobank and the Norwegian HUNT study, and summary-level data from a within-sibship Genome-wide Association Study including >140 000 individuals. RESULTS: Both population and within-sibship MR estimates provided evidence that educational attainment decreased BMI, cigarette smoking and SBP. Genetic variant-outcome associations attenuated in the within-sibship model, but genetic variant-educational attainment associations also attenuated to a similar extent. Thus, within-sibship and population MR estimates were largely consistent. The within-sibship MR estimate of education on mortality was imprecise but consistent with a putative effect. CONCLUSIONS: These results provide evidence of beneficial individual-level effects of education (or liability to education) on adulthood health, independently of potential demographic and family-level confounders.


Assuntos
Sucesso Acadêmico , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , Escolaridade , Polimorfismo de Nucleotídeo Único , Avaliação de Resultados em Cuidados de Saúde
14.
Artigo em Inglês | MEDLINE | ID: mdl-36285173

RESUMO

Background: Excessive alcohol and tobacco use are risk factors for poor health in both men and women, but use patterns and relationships with diseases and mortality differ between sexes. The impact of substance use on the epigenome, including DNA methylation profiles, may also differ by sex. It is also unknown whether parental substance use during childhood is associated with epigenetic changes that persist into adulthood. This study assessed the sex-specific effects of individuals' alcohol and tobacco use, as well as paternal alcohol and paternal/maternal tobacco use, on offspring's cellular aging as measured by epigenetic age acceleration. Methods: Four measures of epigenetic age acceleration (HorvathAA, HannumAA, PhenoAA, and GrimAA), the difference between chronological age and inferred age based on DNA methylation, were estimated from saliva samples. Linear mixed models tested associations between alcohol/tobacco use and epigenetic age acceleration in parents and offspring. Results: Current tobacco smoking was associated with a 4.61-year increase in GrimAA, and former tobacco smoking was associated with a 3.60-year increase in HannumAA after accounting for multiple testing (p < 0.0125). In males only, current tobacco smoking was nominally associated with a 2.19-year increase in HannumAA (p < 0.05), and this effect was significantly different than the female-specific effect (p < 0.0125). Paternal heavy alcohol use when the offspring was 12 or younger was associated with a 4.43-year increase in GrimAA among offspring (p < 0.0125). Conclusions: This study found evidence of sex-specific effects of alcohol and tobacco use, as well as paternal heavy alcohol use, on epigenetic age acceleration.

15.
Front Cardiovasc Med ; 9: 848768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665255

RESUMO

Low socioeconomic status (SES) and living in a disadvantaged neighborhood are associated with poor cardiovascular health. Multiple lines of evidence have linked DNA methylation to both cardiovascular risk factors and social disadvantage indicators. However, limited research has investigated the role of DNA methylation in mediating the associations of individual- and neighborhood-level disadvantage with multiple cardiovascular risk factors in large, multi-ethnic, population-based cohorts. We examined whether disadvantage at the individual level (childhood and adult SES) and neighborhood level (summary neighborhood SES as assessed by Census data and social environment as assessed by perceptions of aesthetic quality, safety, and social cohesion) were associated with 11 cardiovascular risk factors including measures of obesity, diabetes, lipids, and hypertension in 1,154 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). For significant associations, we conducted epigenome-wide mediation analysis to identify methylation sites mediating the relationship between individual/neighborhood disadvantage and cardiovascular risk factors using the JT-Comp method that assesses sparse mediation effects under a composite null hypothesis. In models adjusting for age, sex, race/ethnicity, smoking, medication use, and genetic principal components of ancestry, epigenetic mediation was detected for the associations of adult SES with body mass index (BMI), insulin, and high-density lipoprotein cholesterol (HDL-C), as well as for the association between neighborhood socioeconomic disadvantage and HDL-C at FDR q < 0.05. The 410 CpG mediators identified for the SES-BMI association were enriched for CpGs associated with gene expression (expression quantitative trait methylation loci, or eQTMs), and corresponding genes were enriched in antigen processing and presentation pathways. For cardiovascular risk factors other than BMI, most of the epigenetic mediators lost significance after controlling for BMI. However, 43 methylation sites showed evidence of mediating the neighborhood socioeconomic disadvantage and HDL-C association after BMI adjustment. The identified mediators were enriched for eQTMs, and corresponding genes were enriched in inflammatory and apoptotic pathways. Our findings support the hypothesis that DNA methylation acts as a mediator between individual- and neighborhood-level disadvantage and cardiovascular risk factors, and shed light on the potential underlying epigenetic pathways. Future studies are needed to fully elucidate the biological mechanisms that link social disadvantage to poor cardiovascular health.

16.
Hum Reprod ; 37(5): 1069-1082, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35274129

RESUMO

STUDY QUESTION: Can additional genetic variants for circulating anti-Müllerian hormone (AMH) levels be identified through a genome-wide association study (GWAS) meta-analysis including a large sample of premenopausal women? SUMMARY ANSWER: We identified four loci associated with AMH levels at P < 5 × 10-8: the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 and CDCA7. WHAT IS KNOWN ALREADY: AMH is expressed by antral stage ovarian follicles in women, and variation in age-specific circulating AMH levels has been associated with disease outcomes. However, the physiological mechanisms underlying these AMH-disease associations are largely unknown. STUDY DESIGN, SIZE, DURATION: We performed a GWAS meta-analysis in which we combined summary statistics of a previous AMH GWAS with GWAS data from 3705 additional women from three different cohorts. PARTICIPANTS/MATERIALS, SETTING, METHODS: In total, we included data from 7049 premenopausal female participants of European ancestry. The median age of study participants ranged from 15.3 to 48 years across cohorts. Circulating AMH levels were measured in either serum or plasma samples using different ELISA assays. Study-specific analyses were adjusted for age at blood collection and population stratification, and summary statistics were meta-analysed using a standard error-weighted approach. Subsequently, we functionally annotated GWAS variants that reached genome-wide significance (P < 5 × 10-8). We also performed a gene-based GWAS, pathway analysis and linkage disequilibrium score regression and Mendelian randomization (MR) analyses. MAIN RESULTS AND THE ROLE OF CHANCE: We identified four loci associated with AMH levels at P < 5 × 10-8: the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 and CDCA7. The strongest signal was a missense variant in the AMH gene (rs10417628). Most prioritized genes at the other three identified loci were involved in cell cycle regulation. Genetic correlation analyses indicated a strong positive correlation among single nucleotide polymorphisms for AMH levels and for age at menopause (rg = 0.82, FDR = 0.003). Exploratory two-sample MR analyses did not support causal effects of AMH on breast cancer or polycystic ovary syndrome risk, but should be interpreted with caution as they may be underpowered and the validity of genetic instruments could not be extensively explored. LARGE SCALE DATA: The full AMH GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Whilst this study doubled the sample size of the most recent GWAS, the statistical power is still relatively low. As a result, we may still lack power to identify more genetic variants for AMH and to determine causal effects of AMH on, for example, breast cancer. Also, follow-up studies are needed to investigate whether the signal for the AMH gene is caused by reduced AMH detection by certain assays instead of actual lower circulating AMH levels. WIDER IMPLICATIONS OF THE FINDINGS: Genes mapped to the MCM8, TEX41 and CDCA7 loci are involved in the cell cycle and processes such as DNA replication and apoptosis. The mechanism underlying their associations with AMH may affect the size of the ovarian follicle pool. Altogether, our results provide more insight into the biology of AMH and, accordingly, the biological processes involved in ovarian ageing. STUDY FUNDING/COMPETING INTEREST(S): Nurses' Health Study and Nurses' Health Study II were supported by research grants from the National Institutes of Health (CA172726, CA186107, CA50385, CA87969, CA49449, CA67262, CA178949). The UK Medical Research Council and Wellcome (217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This publication is the work of the listed authors, who will serve as guarantors for the contents of this article. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). Funding for the collection of genotype and phenotype data used here was provided by the British Heart Foundation (SP/07/008/24066), Wellcome (WT092830M and WT08806) and UK Medical Research Council (G1001357). M.C.B., A.L.G.S. and D.A.L. work in a unit that is funded by the University of Bristol and UK Medical Research Council (MC_UU_00011/6). M.C.B.'s contribution to this work was funded by a UK Medical Research Council Skills Development Fellowship (MR/P014054/1) and D.A.L. is a National Institute of Health Research Senior Investigator (NF-0616-10102). A.L.G.S. was supported by the study of Dynamic longitudinal exposome trajectories in cardiovascular and metabolic non-communicable diseases (H2020-SC1-2019-Single-Stage-RTD, project ID 874739). The Doetinchem Cohort Study was financially supported by the Ministry of Health, Welfare and Sports of the Netherlands. The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Ansh Labs performed the AMH measurements for the Doetinchem Cohort Study free of charge. Ansh Labs was not involved in the data analysis, interpretation or reporting, nor was it financially involved in any aspect of the study. R.M.G.V. was funded by the Honours Track of MSc Epidemiology, University Medical Center Utrecht with a grant from the Netherlands Organization for Scientific Research (NWO) (022.005.021). The Study of Women's Health Across the Nation (SWAN) has grant support from the National Institutes of Health (NIH), DHHS, through the National Institute on Aging (NIA), the National Institute of Nursing Research (NINR) and the NIH Office of Research on Women's Health (ORWH) (U01NR004061; U01AG012505, U01AG012535, U01AG012531, U01AG012539, U01AG012546, U01AG012553, U01AG012554, U01AG012495). The SWAN Genomic Analyses and SWAN Legacy have grant support from the NIA (U01AG017719). The Generations Study was funded by Breast Cancer Now and the Institute of Cancer Research (ICR). The ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent official views of the funders. The Sister Study was funded by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Environmental Health Sciences (Z01-ES044005 to D.P.S.); the AMH assays were supported by the Avon Foundation (02-2012-065 to H.B. Nichols and D.P.S.). The breast cancer genome-wide association analyses were supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the 'Ministère de l'Économie, de la Science et de l'Innovation du Québec' through Genome Québec and grant PSR-SIIRI-701, The National Institutes of Health (U19 CA148065, X01HG007492), Cancer Research UK (C1287/A10118, C1287/A16563, C1287/A10710) and The European Union (HEALTH-F2-2009-223175 and H2020 633784 and 634935). All studies and funders are listed in Michailidou et al. (Nature, 2017). F.J.M.B. has received fees and grant support from Merck Serono and Ferring BV. D.A.L. has received financial support from several national and international government and charitable funders as well as from Medtronic Ltd and Roche Diagnostics for research that is unrelated to this study. N.S. is scientific consultant for Ansh Laboratories. The other authors declare no competing interests.


Assuntos
Hormônio Antimülleriano , Neoplasias da Mama , Estudo de Associação Genômica Ampla , Hormônio Antimülleriano/sangue , Hormônio Antimülleriano/genética , Canadá , Estudos de Coortes , Feminino , Humanos , Proteínas Nucleares
17.
Mol Genet Genomic Med ; 10(4): e1896, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179313

RESUMO

BACKGROUND: Age at final menstrual period (FMP) and the accompanying hormone trajectories across the menopause transition do not occur in isolation, but likely share molecular pathways. Understanding the genetics underlying the endocrinology of the menopause transition may be enhanced by jointly analyzing multiple interrelated traits. METHODS: In a sample of 347 White and 164 Black women from the Study of Women's Health Across the Nation (SWAN), we investigated pleiotropic effects of 54 candidate genetic regions of interest (ROI) on 5 menopausal traits (age at FMP and premenopausal and postmenopausal levels of follicle stimulation hormone and estradiol) using multivariate kernel regression (Multi-SKAT). A backward elimination procedure was used to identify which subset of traits were most strongly associated with a specific ROI. RESULTS: In White women, the 20 kb ROI around rs10734411 was significantly associated with the multivariate distribution of age at FMP, premenopausal estradiol, and postmenopausal estradiol (omnibus p-value = .00004). This association did not replicate in the smaller sample of Black women. CONCLUSION: This study using a region-based, multiple-trait approach suggests a shared genetic basis among multiple facets of reproductive aging.


Assuntos
Envelhecimento , Hormônio Foliculoestimulante , Envelhecimento/genética , População Negra , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Menopausa/genética
18.
Epigenetics ; 17(6): 589-611, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227900

RESUMO

Epigenetic clocks have been widely used to predict disease risk in multiple tissues or cells. Their success as a measure of biological ageing has prompted research on the connection between epigenetic pathways of ageing and the socioeconomic gradient in health and mortality. However, studies examining social correlates of epigenetic ageing have yielded inconsistent results. We conducted a comprehensive, comparative analysis of associations between various dimensions of socioeconomic status (SES) (education, income, wealth, occupation, neighbourhood environment, and childhood SES) and eight epigenetic clocks in two well-powered US ageing studies: The Multi-Ethnic Study of Atherosclerosis (MESA) (n = 1,211) and the Health and Retirement Study (HRS) (n = 4,018). In both studies, we found robust associations between SES measures in adulthood and the GrimAge and DunedinPoAm clocks (Bonferroni-corrected p-value < 0.01). In the HRS, significant associations with the Levine and Yang clocks were also evident. These associations were only partially mediated by smoking, alcohol consumption, and obesity, which suggests that differences in health behaviours alone cannot explain the SES gradient in epigenetic ageing in older adults. Further analyses revealed concurrent associations between polygenic risk for accelerated intrinsic epigenetic ageing, SES, and the Levine clock, indicating that genetic risk and social disadvantage may contribute additively to faster biological aging.


Assuntos
Aterosclerose , Aposentadoria , Adulto , Idoso , Envelhecimento/genética , Aterosclerose/genética , Criança , Metilação de DNA , Epigênese Genética , Humanos , Classe Social
19.
J Virol ; 96(4): e0186521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878887

RESUMO

Etiologically, 5% of all cancers worldwide are caused by the high-risk human papillomaviruses (hrHPVs). These viruses encode two oncoproteins (E6 and E7) whose expression is required for cancer initiation and maintenance. Among their cellular targets are the p53 and the retinoblastoma tumor suppressor proteins. Inhibition of the hrHPV E6-mediated ubiquitylation of p53 through the E6AP ubiquitin ligase results in the stabilization of p53, leading to cellular apoptosis. We utilized a live cell high-throughput screen to determine whether exogenous microRNA (miRNA) transfection had the ability to stabilize p53 in hrHPV-positive cervical cancer cells expressing a p53-fluorescent protein as an in vivo reporter of p53 stability. Among the miRNAs whose transfection resulted in the greatest p53 stabilization was 375-3p, which has previously been reported to stabilize p53 in HeLa cells, providing validation of the screen. The top 32 miRNAs, in addition to 375-3p, were further assessed using a second cell-based p53 stability reporter system, as well as in nonreporter HeLa cells to examine their effects on endogenous p53 protein levels, resulting in the identification of 23 miRNAs whose transfection increased p53 levels in HeLa cells. While a few miRNAs that stabilized p53 led to decreases in E6AP protein levels, all targeted HPV oncoprotein expression. We further examined subsets of these miRNAs for their abilities to induce apoptosis and determined whether it was p53-mediated. The introduction of specific miRNAs revealed surprisingly heterogeneous responses in different cell lines. Nonetheless, some of the miRNAs described here have potential as therapeutics for treating HPV-positive cancers. IMPORTANCE Human papillomaviruses cause approximately 5% of all cancers worldwide and encode genes that contribute to both the initiation and maintenance of these cancers. The viral oncoprotein E6 is expressed in all HPV-positive cancers and functions by targeting the degradation of p53 through the engagement of the cellular ubiquitin ligase E6AP. Inhibiting the degradation of p53 leads to apoptosis in HPV-positive cancer cells. Using a high-throughput live cell assay, we identified several miRNAs whose transfection stabilize p53 in HPV-positive cells. These miRNAs have the potential to be used in the treatment of HPV-positive cancers.


Assuntos
Alphapapillomavirus/metabolismo , MicroRNAs/genética , Proteína Supressora de Tumor p53/metabolismo , Alphapapillomavirus/genética , Apoptose , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Estabilidade Proteica , Ubiquitina-Proteína Ligases/metabolismo
20.
Hum Mol Genet ; 31(2): 309-319, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34415308

RESUMO

We conducted cohort- and race-specific epigenome-wide association analyses of mitochondrial deoxyribonucleic acid (mtDNA) copy number (mtDNA CN) measured in whole blood from participants of African and European origins in five cohorts (n = 6182, mean age = 57-67 years, 65% women). In the meta-analysis of all the participants, we discovered 21 mtDNA CN-associated DNA methylation sites (CpG) (P < 1 × 10-7), with a 0.7-3.0 standard deviation increase (3 CpGs) or decrease (18 CpGs) in mtDNA CN corresponding to a 1% increase in DNA methylation. Several significant CpGs have been reported to be associated with at least two risk factors (e.g. chronological age or smoking) for cardiovascular disease (CVD). Five genes [PR/SET domain 16, nuclear receptor subfamily 1 group H member 3 (NR1H3), DNA repair protein, DNA polymerase kappa and decaprenyl-diphosphate synthase subunit 2], which harbor nine significant CpGs, are known to be involved in mitochondrial biosynthesis and functions. For example, NR1H3 encodes a transcription factor that is differentially expressed during an adipose tissue transition. The methylation level of cg09548275 in NR1H3 was negatively associated with mtDNA CN (effect size = -1.71, P = 4 × 10-8) and was positively associated with the NR1H3 expression level (effect size = 0.43, P = 0.0003), which indicates that the methylation level in NR1H3 may underlie the relationship between mtDNA CN, the NR1H3 transcription factor and energy expenditure. In summary, the study results suggest that mtDNA CN variation in whole blood is associated with DNA methylation levels in genes that are involved in a wide range of mitochondrial activities. These findings will help reveal molecular mechanisms between mtDNA CN and CVD.


Assuntos
Epigenoma , Genoma Mitocondrial , Idoso , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Epigenoma/genética , Feminino , Genoma Mitocondrial/genética , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA