Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 1027164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465608

RESUMO

Decidualization is the hormone-dependent process of endometrial remodeling that is essential for fertility and reproductive health. It is characterized by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodeling. Deficits in decidualization are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia. Androgens are key regulators of decidualization that promote optimal differentiation of stromal fibroblasts and activation of downstream signaling pathways required for endometrial remodeling. We have shown that androgen biosynthesis, via 5α-reductase-dependent production of dihydrotestosterone, is required for optimal decidualization of human stromal fibroblasts in vitro, but whether this is required for decidualization in vivo has not been tested. In the current study we used steroid 5α-reductase type 1 (SRD5A1) deficient mice (Srd5a1-/- mice) and a validated model of induced decidualization to investigate the role of SRD5A1 and intracrine androgen signaling in endometrial decidualization. We measured decidualization response (weight/proportion), transcriptomic changes, and morphological and functional parameters of vascular development. These investigations revealed a striking effect of 5α-reductase deficiency on the decidualization response. Furthermore, vessel permeability and transcriptional regulation of angiogenesis signaling pathways, particularly those that involved vascular endothelial growth factor (VEGF), were disrupted in the absence of 5α-reductase. In Srd5a1-/- mice, injection of dihydrotestosterone co-incident with decidualization restored decidualization responses, vessel permeability, and expression of angiogenesis genes to wild type levels. Androgen availability declines with age which may contribute to age-related risk of pregnancy disorders. These findings show that intracrine androgen signaling is required for optimal decidualization in vivo and confirm a major role for androgens in the development of the vasculature during decidualization through regulation of the VEGF pathway. These findings highlight new opportunities for improving age-related deficits in fertility and pregnancy health by targeting androgen-dependent signaling in the endometrium.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Decídua , Remodelação Vascular , Animais , Feminino , Camundongos , Gravidez , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Androgênios/farmacologia , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Decídua/efeitos dos fármacos , Decídua/metabolismo , Di-Hidrotestosterona/farmacologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética , Remodelação Vascular/fisiologia
2.
Curr Opin Cell Biol ; 77: 102104, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671587

RESUMO

Spermatozoa are comprised of many unique proteins not expressed elsewhere. Sperm-specific proteins are first expressed at puberty, after the development of immune tolerance to self-antigens, and have been assumed to remain confined inside the seminiferous tubules, protected from immune cell recognition by various mechanisms of testicular immune privilege. However, new data has shown that sperm-specific proteins are released by the tubules into the surrounding interstitial fluid; from here they can contact immune cells, potentially promote immune tolerance, and enter the circulation. These new findings have clinical implications for diagnostics and therapeutics targeted at a specific class of proteins known as cancer-testis antigens (CTA), the opportunity to identify new communication pathways in the testis, and to discover new ways to monitor testis function.


Assuntos
Neoplasias , Sêmen , Humanos , Imunoterapia , Masculino , Neoplasias/diagnóstico , Neoplasias/terapia , Túbulos Seminíferos , Espermatozoides
3.
Mol Cell Endocrinol ; 544: 111556, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031431

RESUMO

Testicular Leydig cells (LCs) are the principal source of circulating testosterone in males. LC steroidogenesis maintains sexual function, fertility and general health, and is influenced by various paracrine factors. The leukemia inhibitory factor receptor (LIFR) is expressed in the testis and activated by different ligands, including leukemia inhibitory factor (LIF), produced by peritubular myoid cells. LIF can modulate LC testosterone production in vitro under certain circumstances, but the role of consolidated signalling through LIFR in adult LC function in vivo has not been established. We used a conditional Lifr allele in combination with adenoviral vectors expressing Cre-recombinase to generate an acute model of LC Lifr-KO in the adult mouse testis, and showed that LC Lifr is not required for short term LC survival or basal steroidogenesis. However, LIFR-signalling negatively regulates steroidogenic enzyme expression and maximal gonadotrophin-stimulated testosterone biosynthesis, expanding our understanding of the intricate regulation of LC steroidogenic function.


Assuntos
Células Intersticiais do Testículo , Testosterona , Animais , Fator Inibidor de Leucemia/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Receptores de OSM-LIF/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
4.
Andrology ; 9(5): 1652-1661, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33998165

RESUMO

BACKGROUND: Circulating prolactin concentration in rodents and humans is sexually dimorphic. Oestrogens are a well-characterised stimulator of prolactin release. Circulating prolactin fluctuates throughout the menstrual/oestrous cycle of females in response to oestrogen levels, but remains continually low in males. We have previously identified androgens as an inhibitor of prolactin release through characterisation of males of a mouse line with a conditional pituitary androgen receptor knockout (PARKO) which have an increase in circulating prolactin, but unchanged lactotroph number. OBJECTIVES: In the present study, we aimed to specify the cell type that androgens act on to repress prolactin release. MATERIALS AND METHODS: PARKO, lactotroph-specific, Pit1 lineage-specific and neural-specific conditional androgen receptor knockout male mice were investigated using prolactin ELISA, pituitary electron microscopy, immunohistochemistry and qRT-PCR. RESULTS: Lactotroph-specific, Pit1 lineage-specific and neural-specific conditional AR knockouts did not duplicate the high circulating prolactin seen in the PARKO line. Using electron microscopy to examine ultrastructure, we showed that pituitary androgen receptor knockout male mice develop lactotrophs that resemble those seen in female mice. Castrated PARKO males have significantly reduced circulating prolactin compared to intact males. When expression of selected oestrogen-regulated anterior pituitary genes was examined, there were no differences in expression level between controls and knockouts. DISCUSSION: The cell type that androgens act on to repress prolactin release is not the lactotroph, cells in the Pit1-lineage, or the dopaminergic neurons in the hypothalamus. PARKO males develop a female-specific lactotroph ultrastructure that this is likely to contribute to the increase in circulating prolactin. Castrated PARKO males have significantly reduced circulating prolactin compared to intact males, which suggests that removal of both circulating oestrogens and androgens reduces the stimulation of pituitary prolactin release. CONCLUSION: Further investigation is needed into prolactin regulation by changes in androgen-oestrogen balance, which is involved sexual dimorphism of development and diseases including hyperprolactinemia.


Assuntos
Hiperprolactinemia/genética , Lactotrofos , Receptores Androgênicos/deficiência , Animais , Estrogênios/metabolismo , Masculino , Camundongos , Camundongos Knockout , Hipófise/metabolismo , Prolactina/metabolismo
5.
FASEB J ; 35(3): e21397, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33565176

RESUMO

Sperm develop from puberty in the seminiferous tubules, inside the blood-testis barrier to prevent their recognition as "non-self" by the immune system, and it is widely assumed that human sperm-specific proteins cannot access the circulatory or immune systems. Sperm-specific proteins aberrantly expressed in cancer, known as cancer-testis antigens (CTAs), are often pursued as cancer biomarkers and therapeutic targets based on the assumption they are neoantigens absent from the circulation in healthy men. Here, we identify a wide range of germ cell-derived and sperm-specific proteins, including multiple CTAs, that are selectively deposited by the Sertoli cells of the adult mouse and human seminiferous tubules into testicular interstitial fluid (TIF) that is "outside" the blood-testis barrier. From TIF, the proteins can access the circulatory- and immune systems. Disruption of spermatogenesis decreases the abundance of these proteins in mouse TIF, and a sperm-specific CTA is significantly decreased in TIF from infertile men, suggesting that exposure of certain CTAs to the immune system could depend on fertility status. The results provide a rationale for the development of blood-based tests useful in the management of male infertility and indicate CTA candidates for cancer immunotherapy and biomarker development that could show sex-specific and male-fertility-related responses.


Assuntos
Antígenos de Neoplasias/análise , Proteínas/análise , Túbulos Seminíferos/metabolismo , Espermatozoides/química , Animais , Barreira Hematotesticular , Líquido Extracelular/química , Humanos , Imunoterapia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Neoplasias/terapia , Proteoma , Células de Sertoli/fisiologia , Espermatogênese , Testículo/metabolismo
6.
Andrology ; 9(1): 460-473, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996275

RESUMO

BACKGROUND: Despite the increasing popularity of deliverable transgenics, a robust and fully validated method for targeting Leydig cells, capable of delivering long-term transgene expression, is yet to be defined. OBJECTIVES: We compared three viral vector systems in terms of their cell targeting specificity, longevity of gene expression and impact on targeted cell types when delivered to the interstitial compartment of the mouse testis. MATERIALS & METHODS: We delivered lentiviral, adenoviral and adeno-associated (AAV) viral particles to the interstitial compartment of adult mouse testis. Immunolocalization and stereology were performed to characterize ability of vectors to target and deliver transgenes to Leydig cells. RESULTS: Viral vectors utilized in this study were found to specifically target Leydig cells when delivered interstitially. Transgene expression in lentiviral-targeted Leydig cells was detected for 7 days post-injection before Leydig cells underwent apoptosis. Adenoviral-delivered transgene expression was detected for 10 days post-injection with no evidence of targeted cell apoptosis. We found serotype differences in AAV injected testis with AAV serotype 9 targeting a significant proportion of Leydig cells. Targeting efficiency increased to an average of 59.63% (and a maximum of 80%) of Leydig cells with the addition of neuraminidase during injection. In AAV injected testis sections, transgene expression was detectable for up to 50 days post-injection. DISCUSSION & CONCLUSION: Lentivirus, Adenovirus and Adeno-Associated virus delivery to the testis resulted in key variances in targeting efficiency of Leydig cells and in longevity of transgene expression, but identified AAV9 + Neuraminidase as an efficient vector system for transgene delivery and long-term expression. Simple viral delivery procedures and the commercial availability of viral vectors suggests AAV9 + Neuraminidase will be of significant utility to researchers investigating the genetics underpinning Leydig cell function and holds promise to inform the development of novel therapeutics for the treatment of male reproductive disorders.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos , Células Intersticiais do Testículo , Adenoviridae , Animais , Lentivirus , Masculino , Camundongos
7.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008013

RESUMO

Survivors of childhood cancer are at risk for long-term treatment-induced health sequelae, including gonadotoxicity and iatrogenic infertility. At present, for prepubertal boys there are no viable clinical options to preserve future reproductive potential. We investigated the effect of a pubertal induction regimen with gonadotrophins on prepubertal human testis xenograft development. Human testis tissue was obtained from patients with cancer and non-malignant haematological disorders (n = 6; aged 1-14 years) who underwent testis tissue cryopreservation for fertility preservation. Fresh and frozen-thawed testis fragments were transplanted subcutaneously or intratesticularly into immunocompromised mice. Graft-bearing mice received injections of vehicle or exogenous gonadotrophins, human chorionic gonadotrophin (hCG, 20 IU), and follicle-stimulating hormone (FSH, 12.5 IU) three times a week for 12 weeks. The gross morphology of vehicle and gonadotrophin-exposed grafts was similar for both transplantation sites. Exposure of prepubertal human testis tissue xenografts to exogenous gonadotrophins resulted in limited endocrine function of grafts, as demonstrated by the occasional expression of the steroidogenic cholesterol side-chain cleavage enzyme (CYP11A1). Plasma testosterone concentrations (0.13 vs. 0.25 ng/mL; p = 0.594) and seminal vesicle weights (10.02 vs. 13.93 mg; p = 0.431) in gonadotrophin-exposed recipient mice were comparable to vehicle-exposed controls. Regardless of the transplantation site and treatment, initiation and maintenance of androgen receptor (AR) expression were observed in Sertoli cells, indicating commitment towards a more differentiated status. However, neither exogenous gonadotrophins (in castrated host mice) nor endogenous testosterone (in intact host mice) were sufficient to repress the expression of markers associated with immature Sertoli cells, such as anti-Müllerian hormone (AMH) and Ki67, or to induce the redistribution of junctional proteins (connexin 43, CX43; claudin 11, CLDN11) to areas adjacent to the basement membrane. Spermatogonia did not progress developmentally but remained the most advanced germ cell type in testis xenografts. Overall, these findings demonstrate that exogenous gonadotrophins promote partial activation and maturation of the somatic environment in prepubertal testis xenografts. However, alternative hormone regimens or additional factors for pubertal induction are required to complete the functional maturation of the spermatogonial stem cell (SSC) niche.

8.
J Neuroendocrinol ; 32(10): e12903, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32959418

RESUMO

The anterior and intermediate lobes of the pituitary are composed of endocrine cells, as well as vasculature and supporting cells, such as folliculostellate cells. Folliculostellate cells form a network with several postulated roles in the pituitary, including production of paracrine signalling molecules and cytokines, coordination of endocrine cell hormone release, phagocytosis, and structural support. Folliculostellate cells in rats are characterised by expression of S100B protein, and in humans by glial fibrillary acid protein. However, there is evidence for another network of supporting cells in the anterior pituitary that has properties of mural cells, such as vascular smooth muscle cells and pericytes. The present study aims to characterise the distribution of cells that express the mural cell marker platelet derived growth factor receptor beta (PDGFRß) in the mouse pituitary and establish whether these cells are folliculostellate. By immunohistochemical localisation, we determine that approximately 80% of PDGFRß+ cells in the mouse pituitary have a non-perivascular location and 20% are pericytes. Investigation of gene expression in a magnetic cell sorted population of PDGFRß+ cells shows that, despite a mostly non-perivascular location, this population is enriched for mural cell markers but not enriched for rat or human folliculostellate cell markers. This is confirmed by immunohistochemistry. The present study concludes that a mural cell network is present throughout the anterior pituitary of the mouse and that this population does not express well-characterised human or rat folliculostellate cell markers.


Assuntos
Comunicação Celular/fisiologia , Hipófise/citologia , Animais , Biomarcadores/metabolismo , Células Endócrinas/citologia , Células Endócrinas/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pericitos/citologia , Pericitos/fisiologia , Hipófise/metabolismo , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOXB1/metabolismo
9.
J Clin Med ; 9(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963729

RESUMO

The future fertility of prepubertal boys with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Successful spermatogenesis has not been achieved following the xenotransplantation of prepubertal human testis tissue, which is likely due to the failure of somatic cell maturation and function. We used a validated xenograft model to identify the factors required for Leydig and Sertoli cell development and function in immature human testis. Importantly, we compared the maturation status of Sertoli cells in xenografts with that of human testis tissues (n = 9, 1 year-adult). Human fetal testis (n = 6; 14-21 gestational weeks) tissue, which models many aspects of prepubertal testicular development, was transplanted subcutaneously into castrated immunocompromised mice for ~12 months. The mice received exogenous human chorionic gonadotropin (hCG; 20IU, 3×/week). In xenografts exposed continuously to hCG, we demonstrate the maintenance of Leydig cell steroidogenesis, the acquisition of features of Sertoli cell maturation (androgen receptor, lumen development), and the formation of the blood-testis barrier (connexin 43), none of which were present prior to the transplantation or in xenografts in which hCG was withdrawn after 7 months. These studies provide evidence that hCG plays a role in Sertoli cell maturation, which is relevant for future investigations, helping them generate functional gametes from immature testis tissue for clinical application.

10.
Sci Rep ; 9(1): 15037, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636275

RESUMO

Exogenous androgen replacement is used to treat symptoms associated with low testosterone in males. However, adverse cardiovascular risk and negative fertility impacts impel development of alternative approaches to restore/maintain Leydig cell (LC) androgen production. Stem Leydig cell (SLC) transplantation shows promise in this regard however, practicality of SLC isolation/transplantation impede clinical translation. Multipotent human adipose-derived perivascular stem cells (hAd-PSCs) represent an attractive extragonadal stem cell source for regenerative therapies in the testis but their therapeutic potential in this context is unexplored. We asked whether hAd-PSCs could be converted into Leydig-like cells and determined their capacity to promote regeneration in LC-ablated rat testes. Exposure of hAd-PSCs to differentiation-inducing factors in vitro upregulated steroidogenic genes but did not fully induce LC differentiation. In vivo, no difference in LC-regeneration was noted between Sham and hAd-PSC-transplanted rats. Interestingly, Cyp17a1 expression increased in hAd-PSC-transplanted testes compared to intact vehicle controls and the luteinising hormone/testosterone ratio returned to Vehicle control levels which was not the case in EDS + Sham animals. Notably, hAd-PSCs were undetectable one-month after transplantation suggesting this effect is likely mediated via paracrine mechanisms during the initial stages of regeneration; either directly by interacting with regenerating LCs, or through indirect interactions with trophic macrophages.


Assuntos
Tecido Adiposo/citologia , Linhagem da Célula , Células Intersticiais do Testículo/citologia , Pericitos/citologia , Regeneração , Esteroides/metabolismo , Animais , Contagem de Células , Células Cultivadas , Regulação da Expressão Gênica , Hormônios/sangue , Humanos , Masculino , Tamanho do Órgão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos WKY , Testículo/anatomia & histologia , Testículo/citologia
11.
BMC Dev Biol ; 19(1): 8, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995907

RESUMO

BACKGROUND: The interstitium of the mouse testis contains Leydig cells and a small number of steroidogenic cells with adrenal characteristics which may be derived from the fetal adrenal during development or may be a normal subset of the developing fetal Leydig cells. Currently it is not known what regulates development and/or proliferation of this sub-population of steroidogenic cells in the mouse testis. Androgen receptors (AR) are essential for normal testicular function and in this study we have examined the role of the AR in regulating interstitial cell development. RESULTS: Using a mouse model which lacks gonadotropins and AR (hpg.ARKO), stimulation of luteinising hormone receptors in vivo with human chorionic gonadotropin (hCG) caused a marked increase in adrenal cell transcripts/protein in a group of testicular interstitial cells. hCG also induced testicular transcripts associated with basic steroidogenic function in these mice but had no effect on adult Leydig cell-specific transcript levels. In hpg mice with functional AR, treatment with hCG induced Leydig cell-specific function and had no effect on adrenal transcript levels. Examination of mice with cell-specific AR deletion and knockdown of AR in a mouse Leydig cell line suggests that AR in the Leydig cells are likely to regulate these effects. CONCLUSIONS: This study shows that in the mouse the androgen receptor is required both to prevent development of testicular cells with adrenal characteristics and to ensure development of an adult Leydig cell phenotype.


Assuntos
Gonadotropina Coriônica/metabolismo , Desenvolvimento Embrionário/fisiologia , Células Intersticiais do Testículo/citologia , Hormônio Luteinizante/metabolismo , Receptores Androgênicos/biossíntese , Animais , Contagem de Células , Linhagem Celular Tumoral , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Modelos Animais , Fenótipo , Receptores Androgênicos/genética
12.
J Immunol ; 201(9): 2683-2699, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30249809

RESUMO

We have produced Csf1r-deficient rats by homologous recombination in embryonic stem cells. Consistent with the role of Csf1r in macrophage differentiation, there was a loss of peripheral blood monocytes, microglia in the brain, epidermal Langerhans cells, splenic marginal zone macrophages, bone-associated macrophages and osteoclasts, and peritoneal macrophages. Macrophages of splenic red pulp, liver, lung, and gut were less affected. The pleiotropic impacts of the loss of macrophages on development of multiple organ systems in rats were distinct from those reported in mice. Csf1r-/- rats survived well into adulthood with postnatal growth retardation, distinct skeletal and bone marrow abnormalities, infertility, and loss of visceral adipose tissue. Gene expression analysis in spleen revealed selective loss of transcripts associated with the marginal zone and, in brain regions, the loss of known and candidate novel microglia-associated transcripts. Despite the complete absence of microglia, there was little overt phenotype in brain, aside from reduced myelination and increased expression of dopamine receptor-associated transcripts in striatum. The results highlight the redundant and nonredundant functions of CSF1R signaling and of macrophages in development, organogenesis, and homeostasis.


Assuntos
Macrófagos , Microglia , Organogênese/genética , Ratos/crescimento & desenvolvimento , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência , Animais , Modelos Animais , Mutação , Ratos/genética
13.
Am J Hum Genet ; 103(2): 200-212, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075111

RESUMO

Infertility affects around 7% of men worldwide. Idiopathic non-obstructive azoospermia (NOA) is defined as the absence of spermatozoa in the ejaculate due to failed spermatogenesis. There is a high probability that NOA is caused by rare genetic defects. In this study, whole-exome sequencing (WES) was applied to two Estonian brothers diagnosed with NOA and Sertoli cell-only syndrome (SCOS). Compound heterozygous loss-of-function (LoF) variants in FANCM (Fanconi anemia complementation group M) were detected as the most likely cause for their condition. A rare maternally inherited frameshift variant p.Gln498Thrfs∗7 (rs761250416) and a previously undescribed splicing variant (c.4387-10A>G) derived from the father introduce a premature STOP codon leading to a truncated protein. FANCM exhibits enhanced testicular expression. In control subjects, immunohistochemical staining localized FANCM to the Sertoli and spermatogenic cells of seminiferous tubules with increasing intensity through germ cell development. This is consistent with its role in maintaining genomic stability in meiosis and mitosis. In the individual with SCOS carrying bi-allelic FANCM LoF variants, none or only faint expression was detected in the Sertoli cells. As further evidence, we detected two additional NOA-affected case subjects with independent FANCM homozygous nonsense variants, one from Estonia (p.Gln1701∗; rs147021911) and another from Portugal (p.Arg1931∗; rs144567652). The study convincingly demonstrates that bi-allelic recessive LoF variants in FANCM cause azoospermia. FANCM pathogenic variants have also been linked with doubled risk of familial breast and ovarian cancer, providing an example mechanism for the association between infertility and cancer risk, supported by published data on Fancm mutant mouse models.


Assuntos
Azoospermia/genética , DNA Helicases/genética , Perda de Heterozigosidade/genética , Adulto , Animais , Neoplasias da Mama/genética , Códon sem Sentido/genética , Feminino , Mutação da Fase de Leitura/genética , Inativação Gênica/fisiologia , Predisposição Genética para Doença/genética , Homozigoto , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Linhagem , Fenótipo , Espermatozoides/patologia , Testículo/patologia , Sequenciamento do Exoma/métodos
14.
Sci Rep ; 8(1): 11532, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068994

RESUMO

Leukemia inhibitory factor (LIF), a pleiotropic cytokine belonging to the interleukin-6 family, is most often noted for its role in maintaining the balance between stem cell proliferation and differentiation. In rodents, LIF is expressed in both the fetal and adult testis; with the peritubular myoid (PTM) cells thought to be the main site of production. Given their anatomical location, LIF produced by PTM cells may act both on intratubular and interstitial cells to influence spermatogenesis and steroidogenesis respectively. Indeed, the leukemia inhibitory factor receptor (LIFR) is expressed in germ cells, Sertoli cells, Leydig cells, PTM cells and testicular macrophages, suggesting that LIF signalling via LIFR may be a key paracrine regulator of testicular function. However, a precise role(s) for testicular LIFR-signalling in vivo has not been established. To this end, we generated and characterised the testicular phenotype of mice lacking LIFR either in germ cells, Sertoli cells or both, to identify a role for LIFR-signalling in testicular development/function. Our analyses reveal that LIFR is dispensable in germ cells for normal spermatogenesis. However, Sertoli cell LIFR ablation results in a degenerative phenotype, characterised by abnormal germ cell loss, sperm stasis, seminiferous tubule distention and subsequent atrophy of the seminiferous tubules.


Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Testículo/fisiologia , Animais , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/deficiência , Masculino , Camundongos , Camundongos Knockout
15.
Endocr Connect ; 6(8): 866-875, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29038332

RESUMO

Testicular adrenal rest tumours (TARTs) are benign adrenal-like testicular tumours that frequently occur in male patients with congenital adrenal hyperplasia. Recently, GATA transcription factors have been linked to the development of TARTs in mice. The aim of our study was to determine GATA expression in human TARTs and other steroidogenic tissues. We determined GATA expression in TARTs (n = 16), Leydig cell tumours (LCTs; n = 7), adrenal (foetal (n = 6) + adult (n = 10)) and testis (foetal (n = 13) + adult (n = 8)). We found testis-like GATA4, and adrenal-like GATA3 and GATA6 gene expressions by qPCR in human TARTs, indicating mixed testicular and adrenal characteristics of TARTs. Currently, no marker is available to discriminate TARTs from LCTs, leading to misdiagnosis and incorrect treatment. GATA3 and GATA6 mRNAs exhibited excellent discriminative power (area under the curve of 0.908 and 0.816, respectively), while immunohistochemistry did not. GATA genes contain several CREB-binding sites and incubation with 0.1 mM dibutyryl cAMP for 4 h stimulated GATA3, GATA4 and GATA6 expressions in a human foetal testis cell line (hs181.tes). Incubation of adrenocortical cells (H295RA) with ACTH, however, did not induce GATA expression in vitro Although ACTH did not dysregulate GATA expression in the only human ACTH-sensitive in vitro model available, our results do suggest that aberrant expression of GATA transcription factors in human TARTs might be involved in TART formation.

16.
Differentiation ; 97: 44-53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28946057

RESUMO

The developing male reproductive system may be sensitive to disruption by a wide range of exogenous 'endocrine disruptors'. In-utero exposure to environmental chemicals and pharmaceuticals have been hypothesized to have an impact in the increasing incidence of male reproductive disorders. The vulnerability to adverse effects as a consequence of such exposures is elevated during a specific 'window of susceptibility' in fetal life referred to as the masculinisation programing window (MPW). Exposures that occur during prepuberty, such as chemotherapy treatment for cancer during childhood, may also affect future fertility. Much of our current knowledge about fetal and early postnatal human testicular development derives from studies conducted in animal models predictive for humans. Therefore, over recent years, testicular transplantation has been employed as a 'direct' approach to understand the development of human fetal and prepubertal testis in health and disease. In this review we describe the potential use of human testis xenotransplantation to study testicular development and its application for (i) assessing the effects of environmental exposures in humans, and (ii) establishing fertility preservation options for prepubertal boys with cancer.


Assuntos
Desenvolvimento Embrionário/genética , Diferenciação Sexual/genética , Testículo/crescimento & desenvolvimento , Transplante Heterólogo , Animais , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/efeitos adversos , Humanos , Masculino , Testículo/efeitos dos fármacos , Testículo/fisiopatologia
17.
Sci Rep ; 7(1): 8991, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827578

RESUMO

The tamoxifen-inducible Cre system is a popular transgenic method for controlling the induction of recombination by Cre at a specific time and in a specific cell type. However, tamoxifen is not an inert inducer of recombination, but an established endocrine disruptor with mixed agonist/antagonist activity acting via endogenous estrogen receptors. Such potentially confounding effects should be controlled for, but >40% of publications that have used tamoxifen to generate conditional knockouts have not reported even the minimum appropriate controls. To highlight the importance of this issue, the present study investigated the long-term impacts of different doses of a single systemic tamoxifen injection on the testis and the wider endocrine system. We found that a single dose of tamoxifen less than 10% of the mean dose used for recombination induction, caused adverse effects to the testis and to the reproductive endocrine system that persisted long-term. These data raise significant concerns about the widespread use of tamoxifen induction of recombination, and highlight the importance of including appropriate controls in all pathophysiological studies using this means of induction.


Assuntos
Antagonistas de Estrogênios/administração & dosagem , Antagonistas de Estrogênios/efeitos adversos , Efeitos Adversos de Longa Duração , Tamoxifeno/administração & dosagem , Tamoxifeno/efeitos adversos , Testículo/efeitos dos fármacos , Administração Intravenosa , Animais , Histocitoquímica , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Testículo/patologia
18.
Methods Mol Biol ; 1443: 219-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27246343

RESUMO

Conditional gene targeting has revolutionized molecular genetic analysis of nuclear receptor proteins, however development and analysis of such conditional knockouts is far from simple, with many caveats and pitfalls waiting to snare the novice or unprepared. In this chapter, we describe our experience of generating and analyzing mouse models with conditional ablation of the androgen receptor (AR) from tissues of the reproductive system and other organs. The guidance, suggestions, and protocols outlined in the chapter provide the key starting point for analyses of conditional-ARKO mice, completing them as described provides an excellent framework for further focussed project-specific analyses, and applies equally well to analysis of reproductive tissues from any mouse model generated through conditional gene targeting.


Assuntos
Marcação de Genes/métodos , Técnicas Imunoenzimáticas/métodos , Microscopia de Fluorescência/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores Androgênicos/fisiologia , Animais , Genes Reporter , Genótipo , Hormônios/metabolismo , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores Androgênicos/genética , Testículo/metabolismo , Transgenes
19.
PLoS Genet ; 11(7): e1005304, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132308

RESUMO

The organismal roles of the ubiquitously expressed class I PI3K isoform p110ß remain largely unknown. Using a new kinase-dead knockin mouse model that mimics constitutive pharmacological inactivation of p110ß, we document that full inactivation of p110ß leads to embryonic lethality in a substantial fraction of mice. Interestingly, the homozygous p110ß kinase-dead mice that survive into adulthood (maximum ~26% on a mixed genetic background) have no apparent phenotypes, other than subfertility in females and complete infertility in males. Systemic inhibition of p110ß results in a highly specific blockade in the maturation of spermatogonia to spermatocytes. p110ß was previously suggested to signal downstream of the c-kit tyrosine kinase receptor in germ cells to regulate their proliferation and survival. We now report that p110ß also plays a germ cell-extrinsic role in the Sertoli cells (SCs) that support the developing sperm, with p110ß inactivation dampening expression of the SC-specific Androgen Receptor (AR) target gene Rhox5, a homeobox gene critical for spermatogenesis. All extragonadal androgen-dependent functions remain unaffected by global p110ß inactivation. In line with a crucial role for p110ß in SCs, selective inactivation of p110ß in these cells results in male infertility. Our study is the first documentation of the involvement of a signalling enzyme, PI3K, in the regulation of AR activity during spermatogenesis. This developmental pathway may become active in prostate cancer where p110ß and AR have previously been reported to functionally interact.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fertilidade/fisiologia , Infertilidade Masculina/genética , Receptores Androgênicos/metabolismo , Células de Sertoli/metabolismo , Animais , Blastocisto/citologia , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Proteínas de Homeodomínio/genética , Infertilidade Feminina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mórula/citologia , Receptores Androgênicos/genética , Transdução de Sinais/genética , Espermatogênese/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
20.
Am J Reprod Immunol ; 74(1): 12-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25598450

RESUMO

PROBLEM: Previous studies demonstrated a strong association between low androgen levels and reduced capacity to mount an inflammatory response. However, the mechanisms underlying these observations are largely not understood. METHODS OF STUDY: Generation of CD4+CD25+Foxp3+ regulatory T cells in Leydig cell-conditioned media was determined by flow cytometry and ELISA. Influence of testosterone on cytokine response was measured in LPS-stimulated testicular macrophages, Sertoli and peritubular cells. RESULTS: Leydig cell-conditioned media dose-dependently stimulated expression of transcription factor Foxp3 and secretion of IL-10 in splenic CD4+ T cells, an effect abolished by addition of the anti-androgen flutamide. In isolated Sertoli and peritubular cells, testosterone pre-treatment suppressed the LPS-induced inflammatory response on TNF-α mRNA expression, while no effect was evident in testicular macrophages (TM). CONCLUSIONS: Androgens can influence the immune system under normal conditions by the generation and functional differentiation of regulatory T cells and in testicular inflammation by direct effect on Sertoli and peritubular cells.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Interleucina-10/biossíntese , Células Intersticiais do Testículo/imunologia , Linfócitos T Reguladores/citologia , Testosterona/metabolismo , Antagonistas de Androgênios/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Quimiocina CCL2/biossíntese , Meios de Cultivo Condicionados/farmacologia , Flutamida/farmacologia , Inflamação/imunologia , Interleucina-10/metabolismo , Macrófagos/imunologia , Masculino , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Células de Sertoli/imunologia , Linfócitos T Reguladores/imunologia , Testosterona/antagonistas & inibidores , Fator de Crescimento Transformador beta/biossíntese , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA