Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Clin Transl Med ; 13(3): e1197, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36967556

RESUMO

BACKGROUND: Cutaneous melanoma is a lethal form of skin cancer with morbidity and mortality rates highest amongst European, North American and Australasian populations. The developments of targeted therapies (TTs) directed at the oncogene BRAF and its downstream mediator MEK, and immune checkpoint inhibitors (ICI), have revolutionized the treatment of metastatic melanoma, improving patient outcomes. However, both TT and ICI have their limitations. Although TTs are associated with high initial response rates, these are typically short-lived due to resistance. Conversely, although ICIs provide more durable responses, they have lower initial response rates. Due to these distinct yet complementary response profiles, it has been proposed that sequencing ICI with TT could lead to a high frequency of durable responses whilst circumventing the toxicity associated with combined ICI + TT treatment. However, several questions remain unanswered, including the mechanisms underpinning this synergy and the optimal sequencing strategy. The key to determining this is to uncover the biology of each phase of the therapeutic response. AIMS AND METHODS: In this review, we show that melanoma responds to TT and ICI in three phases: early response, minimal residual disease (MRD) and disease progression. We explore the effects of ICI and TT on melanoma cells and the tumour immune microenvironment, with a particular focus on MRD which is predicted to underpin the development of acquired resistance in the third phase of response. CONCLUSION: In doing so, we provide a new framework which may inform novel therapeutic approaches for melanoma, including optimal sequencing strategies and agents that target MRD, thereby ultimately improving clinical outcomes for patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasia Residual/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
2.
Cell Rep ; 41(5): 111571, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323262

RESUMO

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/genética , Nucléolo Celular/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
3.
EMBO Mol Med ; 14(7): e15203, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35514210

RESUMO

The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate-limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.


Assuntos
Leucemia Mieloide Aguda , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Biossíntese de Proteínas , Pirimidinas/farmacologia
4.
Nat Commun ; 13(1): 1100, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232962

RESUMO

Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are limited by residual disease that ultimately results in relapse. This residual disease is often characterized by non-genetic adaptive resistance, that in melanoma is characterised by altered metabolism. Here, we examine how targeted therapy reprograms metabolism in BRAF-mutant melanoma cells using a genome-wide RNA interference (RNAi) screen and global gene expression profiling. Using this systematic approach we demonstrate post-transcriptional regulation of metabolism following BRAF inhibition, involving selective mRNA transport and translation. As proof of concept we demonstrate the RNA processing kinase U2AF homology motif kinase 1 (UHMK1) associates with mRNAs encoding metabolism proteins and selectively controls their transport and translation during adaptation to BRAF-targeted therapy. UHMK1 inactivation induces cell death by disrupting therapy induced metabolic reprogramming, and importantly, delays resistance to BRAF and MEK combination therapy in multiple in vivo models. We propose selective mRNA processing and translation by UHMK1 constitutes a mechanism of non-genetic resistance to targeted therapy in melanoma by controlling metabolic plasticity induced by therapy.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Terapia de Alvo Molecular , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , RNA Mensageiro/uso terapêutico
5.
Cancer Discov ; 12(3): 774-791, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862195

RESUMO

Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism. Ironomycin promotes the recruitment and activation of BAX/BAK, but the resulting mitochondrial outer membrane permeabilization (MOMP) does not lead to potent activation of the apoptotic caspases, nor is the ensuing cell death prevented by inhibiting the previously established pathways of programmed cell death. Consistent with the fact that ironomycin and BH3 mimetics induce MOMP through independent nonredundant pathways, we find that ironomycin exhibits marked in vitro and in vivo synergy with venetoclax and overcomes venetoclax resistance in primary patient samples. SIGNIFICANCE: Ironomycin couples targeting of cellular metabolism with cell death by reducing mitochondrial iron, resulting in the alteration of mitochondrial metabolism and the activation of BAX/BAK. Ironomycin induces MOMP through a different mechanism to BH3 mimetics, and consequently combination therapy has marked synergy in cancers such as acute myeloid leukemia. This article is highlighted in the In This Issue feature, p. 587.


Assuntos
Ferro , Proteína Killer-Antagonista Homóloga a bcl-2 , Apoptose , Morte Celular , Humanos , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944961

RESUMO

Despite the success of immune checkpoint inhibitors that target cytotoxic lymphocyte antigen-4 (CTLA-4) and programmed-cell-death-1 (PD-1) in the treatment of metastatic melanoma, there is still great need to develop robust options for patients who are refractory to first line immunotherapy. As such there has been a resurgence in interest of adoptive cell transfer (ACT) particularly derived from tumor infiltrating lymphocytes. Moreover, the addition of cyclin dependent kinase 4/6 inhibitors (CDK4/6i) have been shown to greatly extend duration of response in combination with BRAF-MEK inhibitors (BRAF-MEKi) in pre-clinical models of melanoma. We therefore investigated whether combinations of BRAF-MEK-CDK4/6i and ACT were efficacious in murine models of melanoma. Triplet targeted therapy of BRAF-MEK-CDK4/6i with OT-1 ACT led to sustained and robust anti-tumor responses in BRAFi sensitive YOVAL1.1. We also show that BRAF-MEKi but not CDK4/6i enhanced MHC Class I expression in melanoma cell lines in vitro. Paradoxically CDK4/6i in low concentrations of IFN-γ reduced expression of MHC Class I and PD-L1 in YOVAL1.1. Overall, this work provides additional pre-clinical evidence to pursue combination of BRAF-MEK-CDK4/6i and to combine this combination with ACT in the clinic.

7.
Cancers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830797

RESUMO

Despite high response rates to initial chemotherapy, the majority of women diagnosed with High-Grade Serous Ovarian Cancer (HGSOC) ultimately develop drug resistance within 1-2 years of treatment. We previously identified the most common mechanism of acquired resistance in HGSOC to date, transcriptional fusions involving the ATP-binding cassette (ABC) transporter ABCB1, which has well established roles in multidrug resistance. However, the underlying biology of fusion-positive cells, as well as how clonal interactions between fusion-negative and positive populations influences proliferative fitness and therapeutic response remains unknown. Using a panel of fusion-negative and positive HGSOC single-cell clones, we demonstrate that in addition to mediating drug resistance, ABCB1 fusion-positive cells display impaired proliferative capacity, elevated oxidative metabolism, altered actin cellular morphology and an extracellular matrix/inflammatory enriched transcriptional profile. The co-culture of fusion-negative and positive populations had no effect on cellular proliferation but markedly altered drug sensitivity to doxorubicin, paclitaxel and cisplatin. Finally, high-throughput screening of 2907 FDA-approved compounds revealed 36 agents that induce equal cytotoxicity in both pure and mixed ABCB1 fusion populations. Collectively, our findings have unraveled the underlying biology of ABCB1 fusion-positive cells beyond drug resistance and identified novel therapeutic agents that may significantly improve the prognosis of relapsed HGSOC patients.

8.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830962

RESUMO

Resistance to therapy continues to be a barrier to curative treatments in melanoma. Recent insights from the clinic and experimental settings have highlighted a range of non-genetic adaptive mechanisms that contribute to therapy resistance and disease relapse, including transcriptional, post-transcriptional and metabolic reprogramming. A growing body of evidence highlights the inherent plasticity of melanoma metabolism, evidenced by reversible metabolome alterations and flexibility in fuel usage that occur during metastasis and response to anti-cancer therapies. Here, we discuss how the inherent metabolic plasticity of melanoma cells facilitates both disease progression and acquisition of anti-cancer therapy resistance. In particular, we discuss in detail the different metabolic changes that occur during the three major phases of the targeted therapy response-the early response, drug tolerance and acquired resistance. We also discuss how non-genetic programs, including transcription and translation, control this process. The prevalence and diverse array of these non-genetic resistance mechanisms poses a new challenge to the field that requires innovative strategies to monitor and counteract these adaptive processes in the quest to prevent therapy resistance.

9.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625515

RESUMO

BACKGROUND: Melanoma brain metastases (MBMs) are a challenging clinical problem with high morbidity and mortality. Although first-line dabrafenib-trametinib and ipilimumab-nivolumab have similar intracranial response rates (50%-55%), central nervous system (CNS) resistance to BRAF-MEK inhibitors (BRAF-MEKi) usually occurs around 6 months, and durable responses are only seen with combination immunotherapy. We sought to investigate the utility of ipilimumab-nivolumab after MBM progression on BRAF-MEKi and identify mechanisms of resistance. METHODS: Patients who received first-line ipilimumab-nivolumab for MBMs or second/third line ipilimumab-nivolumab for intracranial metastases with BRAFV600 mutations with prior progression on BRAF-MEKi and MRI brain staging from March 1, 2015 to June 30, 2018 were included. Modified intracranial RECIST was used to assess response. Formalin-fixed paraffin-embedded samples of BRAFV600 mutant MBMs that were naïve to systemic treatment (n=18) or excised after progression on BRAF-MEKi (n=14) underwent whole transcriptome sequencing. Comparative analyses of MBMs naïve to systemic treatment versus BRAF-MEKi progression were performed. RESULTS: Twenty-five and 30 patients who received first and second/third line ipilimumab-nivolumab, were included respectively. Median sum of MBM diameters was 13 and 20.5 mm for the first and second/third line ipilimumab-nivolumab groups, respectively. Intracranial response rate was 75.0% (12/16), and median progression-free survival (PFS) was 41.6 months for first-line ipilimumab-nivolumab. Efficacy of second/third line ipilimumab-nivolumab after BRAF-MEKi progression was poor with an intracranial response rate of 4.8% (1/21) and median PFS of 1.3 months. Given the poor activity of ipilimumab-nivolumab after BRAF-MEKi MBM progression, we performed whole transcriptome sequencing to identify mechanisms of drug resistance. We identified a set of 178 differentially expressed genes (DEGs) between naïve and MBMs with progression on BRAF-MEKi treatment (p value <0.05, false discovery rate (FDR) <0.1). No distinct pathways were identified from gene set enrichment analyses using Kyoto Encyclopedia of Genes and Genomes, Gene Ontogeny or Hallmark libraries; however, enrichment of DEG from the Innate Anti-PD1 Resistance Signature (IPRES) was identified (p value=0.007, FDR=0.03). CONCLUSIONS: Second-line ipilimumab-nivolumab for MBMs after BRAF-MEKi progression has poor activity. MBMs that are resistant to BRAF-MEKi that also conferred resistance to second-line ipilimumab-nivolumab showed enrichment of the IPRES gene signature.


Assuntos
Neoplasias Encefálicas/etiologia , Ipilimumab/uso terapêutico , Melanoma/complicações , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/genética , Feminino , Humanos , Ipilimumab/farmacologia , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Nivolumabe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Adulto Jovem
10.
Cancer Cell ; 39(8): 1047-1049, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375607

RESUMO

Resistance to targeted therapies is a major challenge in cancer care and occurs via genetic and non-genetic mechanisms. In this issue of Cancer Cell, Marin-Bejar et al. demonstrate that melanomas recurrently select genetic or non-genetic resistance trajectories and that targeting neural crest stem cell-like cells prevents non-genetic, but not genetic, resistance.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Crista Neural
11.
Cancers (Basel) ; 13(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572972

RESUMO

Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are being tested in numerous clinical trials and are currently employed successfully in the clinic for the treatment of breast cancers. Understanding their mechanism of action and interaction with other therapies is vital in their clinical development. CDK4/6 regulate the cell cycle via phosphorylation and inhibition of the tumour suppressor RB, and in addition can phosphorylate many cellular proteins and modulate numerous cellular functions including cell metabolism. Metabolic reprogramming is observed in melanoma following standard-of-care BRAF/MEK inhibition and is involved in both therapeutic response and resistance. In preclinical models, CDK4/6 inhibitors overcome BRAF/MEK inhibitor resistance, leading to sustained tumour regression; however, the metabolic response to this combination has not been explored. Here, we investigate how CDK4/6 inhibition reprograms metabolism and if this alters metabolic reprogramming observed upon BRAF/MEK inhibition. Although CDK4/6 inhibition has no substantial effect on the metabolic phenotype following BRAF/MEK targeted therapy in melanoma, CDK4/6 inhibition alone significantly enhances mitochondrial metabolism. The increase in mitochondrial metabolism in melanoma cells following CDK4/6 inhibition is fuelled in part by both glutamine metabolism and fatty acid oxidation pathways and is partially dependent on p53. Collectively, our findings identify new p53-dependent metabolic vulnerabilities that may be targeted to improve response to CDK4/6 inhibitors.

12.
Sci Data ; 7(1): 339, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046726

RESUMO

Identification of mechanisms underlying sensitivity and response to targeted therapies, such as the BRAF inhibitor vemurafenib, is critical in order to improve efficacy of these therapies in the clinic and delay onset of resistance. Glycolysis has emerged as a key feature of the BRAF inhibitor response in melanoma cells, and importantly, the metabolic response to vemurafenib in melanoma patients can predict patient outcome. Here, we present a multiparameter genome-wide siRNA screening dataset of genes that when depleted improve the viability and glycolytic response to vemurafenib in BRAFV600 mutated melanoma cells. These datasets are suitable for analysis of genes involved in cell viability and glycolysis in steady state conditions and following treatment with vemurafenib, as well as computational approaches to identify gene regulatory networks that mediate response to BRAF inhibition in melanoma.


Assuntos
Glicólise/genética , Melanoma/metabolismo , Interferência de RNA , Vemurafenib/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética
13.
Cancers (Basel) ; 12(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549336

RESUMO

Excess body weight has been identified as a risk factor for many types of cancers, and for the majority of cancers, it is associated with poor outcomes. In contrast, there are cancers in which obesity is associated with favorable outcomes and this has been termed the "obesity paradox". In melanoma, the connection between obesity and the increased incidence is not as strong as for other cancer types with some but not all studies showing an association. However, several recent studies have indicated that increased body mass index (BMI) improves survival outcomes in targeted and immune therapy treated melanoma patients. The mechanisms underlying how obesity leads to changes in therapeutic outcomes are not completely understood. This review discusses the current evidence implicating obesity in melanoma progression and patient response to targeted and immunotherapy, and discusses potential mechanisms underpinning these associations.

14.
Proc Natl Acad Sci U S A ; 116(36): 17990-18000, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31439820

RESUMO

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Melanoma/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Proteínas de Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Humanos , Células MCF-7 , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Assay Drug Dev Technol ; 14(8): 478-488, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27661290

RESUMO

Correct subcellular localization of proteins is a requirement for appropriate function. This is especially true in epithelial cells, which rely on the precise localization of a diverse array of epithelial polarity and cellular adhesion proteins. Loss of cell polarity and adhesion is a hallmark of cancer, and mislocalization of core polarity proteins, such as Scribble, is observed in a range of human epithelial tumors and is prognostic of poor survival. Despite this, little is known about how Scribble membrane localization is regulated. Here, we describe the development and application of a phenotypic high-content screening assay that is designed to specifically quantify membrane levels of Scribble to identify regulators of its membrane localization. A screening platform that is capable of resolving individual cells and quantifying membrane protein localization in confluent epithelial monolayers was developed by using the cytoplasm-to-cell-membrane bioapplication integrated with the Cellomics ArrayScan high-content imaging platform. Application of this method to a boutique human epithelial polarity and signaling small interfering RNA (siRNA) library resulted in highly robust coefficient-of-variance and Z' factor values. As proof of concept, we present two candidate genes whose depletion specifically reduces Scribble protein levels at the membrane. Data mining revealed that these proteins interact with components of the Scribble polarity complex, providing support for the utility of the screening approach. This method is broadly applicable to genome-wide and large-scale compound screening of membrane-bound proteins, and when coupled with pathway analysis the dataset becomes even more valuable and can provide predictive mechanistic insight.


Assuntos
Células Epiteliais/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/análise , Fenótipo , Linhagem Celular , Células Epiteliais/metabolismo , Imunofluorescência/métodos , Humanos , Proteínas de Membrana/metabolismo
16.
Pharmacol Res ; 107: 42-47, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26924126

RESUMO

Metabolic reprogramming is a recognized hallmark of cancer. In order to support continued proliferation and growth, tumor cells must metabolically adapt to balance their bioenergetic and biosynthetic needs. To achieve this, cancer cells switch from mitochondrial oxidative phosphorylation to predominantly rely on glycolysis, a process known as the "Warburg effect". The BRAF oncogene has recently emerged as a critical regulator of this process in melanoma, bringing to the fore the importance of metabolic reprogramming in the pathogenesis and treatment of metastatic melanoma. In this review, we summarize our current understanding of oncogenic reprogramming of metabolism in BRAF and NRAS mutant melanoma, and highlight emerging evidence supporting a metabolic basis for MAPK pathway inhibitor resistance and metabolic vulnerabilities that may be exploited to overcome this.


Assuntos
Genes ras/genética , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores
17.
Exp Cell Res ; 328(2): 249-57, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179759

RESUMO

Loss of cell polarity and tissue architecture is a hallmark of aggressive epithelial cancers. In addition to serving as an initial barrier to tumorigenesis, evidence in the literature has pointed towards a highly conserved role for many polarity regulators during tumor formation and progression. Here, we review recent developments in the field that have been driven by genetically engineered mouse models that establish the tumor suppressive and context dependent oncogenic function of cell polarity regulators in vivo. These studies emphasize the complexity of the polarity network during cancer formation and progression, and reveal the need to interpret polarity protein function in a cell-type and tissue specific manner. They also highlight how aberrant polarity signaling could provide a novel route for therapeutic intervention to improve our management of malignancies in the clinic.


Assuntos
Polaridade Celular/fisiologia , Neoplasias/fisiopatologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neoplasias/patologia , Transdução de Sinais/fisiologia
18.
PLoS Genet ; 10(5): e1004323, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24852022

RESUMO

Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Polaridade Celular , Feminino , Homeostase , Hiperplasia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Morfogênese
19.
BMC Bioinformatics ; 14 Suppl 2: S7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23368093

RESUMO

Gene expression profiles can show significant changes when genetically diseased cells are compared with non-diseased cells. Biological networks are often used to identify active subnetworks (ASNs) of the diseases from the expression profiles to understand the reason behind the observed changes. Current methodologies for discovering ASNs mostly use undirected PPI networks and node centric approaches. This can limit their ability to find the meaningful ASNs when using integrated networks having comprehensive information than the traditional protein-protein interaction networks. Using appropriate scoring functions to assess both genes and their interactions may allow the discovery of better ASNs. In this paper, we present CASNet, which aims to identify better ASNs using (i) integrated interaction networks (mixed graphs), (ii) directions of regulations of genes, and (iii) combined node and edge scores. We simplify and extend previous methodologies to incorporate edge evaluations and lessen their sensitivity to significance thresholds. We formulate our objective functions using mixed integer programming (MIP) and show that optimal solutions may be obtained. We compare the ASNs obtained by CASNet and similar other approaches to show that CASNet can often discover more meaningful and stable regulatory ASNs. Our analysis of a breast cancer dataset finds that the positive feedback loops across 7 genes, AR, ESR1, MYC, E2F2, PGR, BCL2 and CCND1 are conserved across the basal/triple negative subtypes in multiple datasets that could potentially explain the aggressive nature of this cancer subtype. Furthermore, comparison of the basal subtype of breast cancer and the mesenchymal subtype of glioblastoma ASNs shows that an ASN in the vicinity of IL6 is conserved across the two subtypes. This result suggests that subtypes of different cancers can show molecular similarities indicating that the therapeutic approaches in different types of cancers may be shared.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Simulação por Computador , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA