Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 165(1): 1-17, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194434

RESUMO

In brief: The nuclear receptor steroidogenic factor 1 (SF-1) is essential for mature mouse gonad steroidogenic gene expression, for Leydig and Sertoli cell function, and depletion of SF-1 in steroidogenic cells of the testis compromises steroidogenesis, spermatogenesis and male fertility. Abstract: Steroidogenic factor 1 (SF-1 or NR5A1) plays an essential role in the development of fetal gonads and regulates genes involved in steroid biosynthesis. Since SF-1 is expressed in multiple cell types in mouse gonads, we developed three novel conditional knockout (cKO) mouse models employing Cre-recombinase and floxed alleles of SF-1 (Nr5a1f/f) to identify its role in testes and ovaries of mature mice: Cytochrome P450 17α-hydroxylase (Cyp17Cre/+;Nr5a1f/f, Leydig and theca cell-specific), aromatase (Cyp19Cre/+;Nr5a1f/f, Sertoli and granulosa cell-specific), as well as a combination of both (Cyp17+Cyp19-Cre;Nr5a1f/f). Compared to control animals, Cyp19-Cre;Nr5a1f/f cKO males showed normal fertility and testicular function. The Cyp17Cre/+;Nr5a1f/f cKO males had smaller testis, with drastically reduced Leydig cell volumes and impaired steroidogenesis, though their reproductive performance remained comparable to controls. Some 50% of Cyp17Cre/++Cyp19Cre/+;Nr5a1f/f double-cKO (dKO) males were infertile, while the remaining 50% showed significantly reduced fertility. These dKO males also had smaller testis with degenerative seminiferous tubules, abnormal Leydig cell morphology and lower levels of intra-testicular testosterone. Abnormal Sertoli cell localization was noted in dKO testes, with increased Sox9, p27 and inhibin subunit ßb and decreased androgen receptor expression. Female mice from all genotypes showed normal reproductive capacity, though steroidogenic gene expression levels were significantly decreased in both Cyp17Cre/+;Nr5a1f/f cKO and dKO females. These results show the essential role of SF-1 in mature mouse gonad steroidogenic gene expression, for Leydig and Sertoli cell function, and that depletion SF-1 in all steroidogenic cells of the testis compromises steroidogenesis, spermatogenesis and male fertility.


Assuntos
Ovário , Fator Esteroidogênico 1 , Testículo , Animais , Feminino , Masculino , Camundongos , Aromatase/metabolismo , Células Intersticiais do Testículo/metabolismo , Camundongos Knockout , Ovário/metabolismo , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Testículo/metabolismo , Testosterona
2.
Endocrinology ; 163(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247045

RESUMO

The orphan nuclear receptor steroidogenic factor-1 (SF-1 or NR5A1) is an indispensable regulator of adrenal and gonadal formation, playing roles in sex determination, hypothalamic development, and pituitary function. This study aimed to identify the roles of SF-1 in postnatal female reproductive function. Using a progesterone receptor-driven Cre recombinase, we developed a novel murine model, characterized by conditional depletion of SF-1 [PR-Cre;Nr5a1f/f; conditional knockout (cKO)] in the hypothalamic-pituitary-gonadal axis. Mature female cKO were infertile due to the absence of ovulation. Reduced gonadotropin concentrations in the pituitary gland that were nevertheless sufficient to maintain regular estrous cycles were observed in mature cKO females. The cKO ovaries showed abnormal lipid accumulation in the stroma, associated with an irregular expression of cholesterol homeostatic genes such as Star, Scp2, and Acat1. The depletion of SF-1 in granulosa cells prevented appropriate cumulus oöphorus expansion, characterized by reduced expression of Areg, Ereg, and Ptgs2. Exogenous delivery of gonadotropins to cKO females to induce ovulation did not restore fertility and was associated with impaired formation and function of corpora lutea accompanied by reduced expression of the steroidogenic genes Cyp11a1 and Cyp19a1 and attenuated progesterone production. Surgical transplantation of cKO ovaries to ovariectomized control animals (Nr5a1f/f) resulted in 2 separate phenotypes, either sterility or apparently normal fertility. The deletion of SF-1 in the pituitary and in granulosa cells near the moment of ovulation demonstrated that this nuclear receptor functions across the pituitary-gonadal axis and plays essential roles in gonadotropin synthesis, cumulus expansion, and luteinization.


Assuntos
Ovário , Fator Esteroidogênico 1 , Animais , Feminino , Células da Granulosa/fisiologia , Hipotálamo/fisiologia , Camundongos , Camundongos Knockout , Ovário/fisiologia , Ovulação/genética , Hipófise/fisiologia , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo
3.
Physiol Rev ; 99(2): 1249-1279, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810078

RESUMO

Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.


Assuntos
Receptores Citoplasmáticos e Nucleares/metabolismo , Reprodução , Fator Esteroidogênico 1/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Endometriose/metabolismo , Endometriose/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Tumor de Células de Leydig/metabolismo , Tumor de Células de Leydig/patologia , Ligantes , Masculino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Gravidez , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Fator Esteroidogênico 1/química , Fator Esteroidogênico 1/genética , Relação Estrutura-Atividade , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA