Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425704

RESUMO

Granulocyte colony stimulating factor (G-CSF) is commonly used as adjunct treatment to hasten recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, the utility of G-CSF administration after ex vivo gene therapy procedures targeting human HSPCs has not been thoroughly evaluated. Here, we provide evidence that post-transplant administration of G-CSF impedes engraftment of CRISPR-Cas9 gene edited human HSPCs in xenograft models. G-CSF acts by exacerbating the p53-mediated DNA damage response triggered by Cas9- mediated DNA double-stranded breaks. Transient p53 inhibition in culture attenuates the negative impact of G-CSF on gene edited HSPC function. In contrast, post-transplant administration of G-CSF does not impair the repopulating properties of unmanipulated human HSPCs or HSPCs genetically engineered by transduction with lentiviral vectors. The potential for post-transplant G-CSF administration to aggravate HSPC toxicity associated with CRISPR-Cas9 gene editing should be considered in the design of ex vivo autologous HSPC gene editing clinical trials.

2.
Hum Gene Ther ; 33(23-24): 1293-1304, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094106

RESUMO

Ex vivo gene therapy procedures targeting hematopoietic stem and progenitor cells (HSPCs) predominantly utilize lentivirus-based vectors for gene transfer. We provide the first pre-clinical evidence of the therapeutic utility of a foamy virus vector (FVV) for the genetic correction of human leukocyte adhesion deficiency type 1 (LAD-1), an inherited primary immunodeficiency resulting from mutation of the ß2 integrin common chain, CD18. CD34+ HSPCs isolated from a severely affected LAD-1 patient were transduced under a current good manufacturing practice-compatible protocol with FVV harboring a therapeutic CD18 transgene. LAD-1-associated cellular chemotactic defects were ameliorated in transgene-positive, myeloid-differentiated LAD-1 cells assayed in response to a strong neutrophil chemoattractant in vitro. Xenotransplantation of vector-transduced LAD-1 HSPCs in immunodeficient (NSG) mice resulted in long-term (∼5 months) human cell engraftment within murine bone marrow. Moreover, engrafted LAD-1 myeloid cells displayed in vivo levels of transgene marking previously reported to ameliorate the LAD-1 phenotype in a large animal model of the disease. Vector insertion site analysis revealed a favorable vector integration profile with no overt evidence of genotoxicity. These results coupled with the unique biological features of wild-type foamy virus support the development of FVVs for ex vivo gene therapy of LAD-1.


Assuntos
Síndrome da Aderência Leucocítica Deficitária , Spumavirus , Humanos , Camundongos , Animais , Spumavirus/genética , Vetores Genéticos/genética , Síndrome da Aderência Leucocítica Deficitária/genética , Síndrome da Aderência Leucocítica Deficitária/terapia , Células-Tronco Hematopoéticas , Antígenos CD18/genética , Antígenos CD34/genética
3.
Stem Cell Reports ; 16(9): 2336-2350, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34450041

RESUMO

Activation of NOTCH signaling in human hematopoietic stem/progenitor cells (HSPCs) by treatment with an engineered Delta-like ligand (DELTA1ext-IgG [DXI]) has enabled ex vivo expansion of short-term HSPCs, but the effect on long-term repopulating hematopoietic stem cells (LTR-HSCs) remains uncertain. Here, we demonstrate that ex vivo culture of human adult HSPCs with DXI under low oxygen tension limits ER stress in LTR-HSCs and lineage-committed progenitors compared with normoxic cultures. A distinct HSC gene signature was upregulated in cells cultured with DXI in hypoxia and, after 21 days of culture, the frequency of LTR-HSCs increased 4.9-fold relative to uncultured cells and 4.2-fold compared with the normoxia + DXI group. NOTCH and hypoxia pathways intersected to maintain undifferentiated phenotypes in cultured HSPCs. Our work underscores the importance of mitigating ER stress perturbations to preserve functional LTR-HSCs in extended cultures and offers a clinically feasible platform for the expansion of human HSPCs.


Assuntos
Hipóxia Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Receptores Notch/metabolismo , Antígenos CD34/metabolismo , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Biologia Computacional/métodos , Humanos , Anotação de Sequência Molecular , Receptores Notch/genética , Transdução de Sinais , Transcriptoma
4.
Cells ; 10(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810313

RESUMO

Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA.


Assuntos
Anemia de Diamond-Blackfan/tratamento farmacológico , Anemia de Diamond-Blackfan/patologia , Benzoatos/uso terapêutico , Diferenciação Celular , Células Eritroides/patologia , Hidrazinas/uso terapêutico , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Pirazóis/uso terapêutico , Anemia de Diamond-Blackfan/genética , Animais , Sequência de Bases , Benzoatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Eritroides/efeitos dos fármacos , Eritropoese , Humanos , Hidrazinas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Pirazóis/farmacologia
5.
Mol Ther ; 29(4): 1611-1624, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33309880

RESUMO

Ex vivo gene correction of hematopoietic stem and progenitor cells (HSPCs) has emerged as a promising therapeutic approach for treatment of inherited human blood disorders. Use of engineered nucleases to target therapeutic transgenes to their endogenous genetic loci addresses many of the limitations associated with viral vector-based gene replacement strategies, such as insertional mutagenesis, variable gene dosage, and ectopic expression. Common methods of nuclease-mediated site-specific integration utilize the homology-directed repair (HDR) pathway. However, these approaches are inefficient in HSPCs, where non-homologous end joining (NHEJ) is the primary DNA repair mechanism. Recently, a novel NHEJ-based approach to CRISPR-Cas9-mediated transgene knockin, known as homology-independent targeted integration (HITI), has demonstrated improved site-specific integration frequencies in non-dividing cells. Here we utilize a HITI-based approach to achieve robust site-specific transgene integration in human mobilized peripheral blood CD34+ HSPCs. As proof of concept, a reporter gene was targeted to a clinically relevant genetic locus using a recombinant adeno-associated virus serotype 6 vector and single guide RNA/Cas9 ribonucleoprotein complexes. We demonstrate high levels of stable HITI-mediated genome editing (∼21%) in repopulating HSPCs after transplantation into immunodeficient mice. Our study demonstrates that HITI-mediated genome editing provides an effective alternative to HDR-based transgene integration in CD34+ HSPCs.


Assuntos
Sistemas CRISPR-Cas/genética , Terapia Genética , Doenças Hematológicas/genética , Transplante de Células-Tronco Hematopoéticas , Animais , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Dependovirus/genética , Edição de Genes , Vetores Genéticos/genética , Genoma Humano/genética , Doenças Hematológicas/patologia , Doenças Hematológicas/terapia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
Genes (Basel) ; 11(12)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322084

RESUMO

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated genome editing holds remarkable promise for the treatment of human genetic diseases. However, the possibility of off-target Cas9 activity remains a concern. To address this issue using clinically relevant target cells, we electroporated Cas9 ribonucleoprotein (RNP) complexes (independently targeted to two different genomic loci, the CXCR4 locus on chromosome 2 and the AAVS1 locus on chromosome 19) into human mobilized peripheral blood-derived hematopoietic stem and progenitor cells (HSPCs) and assessed the acquisition of somatic mutations in an unbiased, genome-wide manner via whole genome sequencing (WGS) of single-cell-derived HSPC clones. Bioinformatic analysis identified >20,000 total somatic variants (indels, single nucleotide variants, and structural variants) distributed among Cas9-treated and non-Cas9-treated control HSPC clones. Statistical analysis revealed no significant difference in the number of novel non-targeted indels among the samples. Moreover, data analysis showed no evidence of Cas9-mediated indel formation at 623 predicted off-target sites. The median number of novel single nucleotide variants was slightly elevated in Cas9 RNP-recipient sample groups compared to baseline, but did not reach statistical significance. Structural variants were rare and demonstrated no clear causal connection to Cas9-mediated gene editing procedures. We find that the collective somatic mutational burden observed within Cas9 RNP-edited human HSPC clones is indistinguishable from naturally occurring levels of background genetic heterogeneity.


Assuntos
Sistemas CRISPR-Cas , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 2/genética , Células Clonais , Edição de Genes , Células-Tronco Hematopoéticas , Adulto , Feminino , Loci Gênicos , Humanos , Receptores CXCR4/genética
7.
Blood Adv ; 4(2): 367-379, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31985806

RESUMO

Acute myeloid leukemia (AML) is a genetically heterogeneous disease that is characterized by abnormal clonal proliferation of myeloid progenitor cells found predominantly within the bone marrow (BM) and blood. Recent studies suggest that genetic and phenotypic alterations in the BM microenvironment support leukemogenesis and allow leukemic cells to survive and evade chemotherapy-induced death. However, despite substantial evidence indicating the role of tumor-host interactions in AML pathogenesis, little is known about the complex microenvironment of the BM. To address this, we performed novel proteomic profiling of the noncellular compartment of the BM microenvironment in patients with AML (n = 10) and age- and sex-matched healthy control subjects (n = 10) using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan). We show that proteomic assessment of blood or RNA-sequencing of BM are suboptimal alternate screening strategies to determine the true proteomic composition of the extracellular soluble compartment of AML patient BM. Proteomic analysis revealed that 168 proteins significantly differed in abundance, with 91 upregulated and 77 downregulated in leukemic BM. A highly connected signaling network of cytokines and chemokines, including IL-8, was found to be the most prominent proteomic signature associated with AML in the BM microenvironment. We report the first description of significantly elevated levels of the myelosuppressive chemokine CCL23 (myeloid progenitor inhibitory factor-1) in both AML and myelodysplastic syndrome patients and perform functional experiments supportive of a role in the suppression of normal hematopoiesis. This unique paired RNA-sequencing and proteomics data set provides innovative mechanistic insights into AML and healthy aging and should serve as a useful public resource.


Assuntos
Medula Óssea/patologia , Leucemia Mieloide Aguda/patologia , Proteômica/métodos , Estudos de Casos e Controles , Microambiente Celular , Quimiocinas/análise , Quimiocinas CC/metabolismo , Citocinas/análise , Regulação Leucêmica da Expressão Gênica , Humanos , Interleucina-8/metabolismo , Proteínas de Neoplasias/análise
8.
Exp Hematol ; 73: 1-6.e6, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30986494

RESUMO

A causal link between hematopoietic stem/progenitor cell (HSPC) dysfunction and DNA damage accrual has been proposed. Clinically relevant strategies to maintain genome integrity in these cells are needed. Here we report that eltrombopag, a small molecule agonist of the thrombopoietin (TPO) receptor used in the clinic, promotes DNA double-strand break (DSB) repair in human HSPCs. We found that eltrombopag specifically activates the classic nonhomologous end-joining (C-NHEJ) DNA repair mechanism, a pathway known to support genome integrity. Eltrombopag-mediated DNA repair results in enhanced genome stability, survival, and function of primary human HSPCs, as demonstrated in karyotyping analyses, colony-forming unit assays and after transplantation in immunodeficient NSG mice. Eltrombopag may offer a new therapeutic modality to protect human HSPCs against genome insults.


Assuntos
Benzoatos/farmacologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Hidrazinas/farmacologia , Pirazóis/farmacologia , Células Cultivadas , Humanos , Receptores de Trombopoetina/metabolismo
9.
J Neurointerv Surg ; 11(2): 127-132, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29930159

RESUMO

BACKGROUND: Stent retriever thrombectomy (SRT) in acute thromboembolic stroke can result in post-thrombectomy subarachnoid hemorrhage (PTSAH). Intraprocedural findings associated with PTSAH are not well defined. OBJECTIVE: To identify angiographic findings and procedural factors during SRT that are associated with PTSAH. MATERIALS AND METHODS: This was a retrospective, observational cohort study of consecutive patients with middle cerebral artery (MCA) acute ischemic stroke treated with SRT. Inclusion criteria were: (1) age ≥18 years; (2) thromboembolic occlusion of the MCA; (3) at least one stent retriever pass beginning in an M2 branch; (4) postprocedural CT or MRI scan within 24 hours; (5) non-enhanced CT Alberta Stroke Program Early CT Score >5. Exclusion criteria included multi-territory stroke before SRT. RESULTS: Eighty-five patients were enrolled; eight patients had PTSAH (group 1) and 77 did not (group 2). Baseline demographic and clinical characteristics were comparable between the two groups. In group 1, a significantly greater proportion of patients had more than two stent retriever passes (62.5% vs 18.2%, P=0.01), a stent retriever positioned ≥2 cm along an M2 branch (100% vs 30.2%, P=0.002), and the presence of severe iatrogenic vasospasm before SRT pass (37.5% vs 5.2%, P=0.02). One patient with PTSAH and associated mass effect deteriorated clinically. CONCLUSIONS: An increased number of stent retriever passes, distal device positioning, and presence of severe vasospasm were associated with PTSAH. Neurological deterioration with PTSAH can occur.


Assuntos
Infarto da Artéria Cerebral Média/diagnóstico por imagem , Monitorização Neurofisiológica Intraoperatória/métodos , Stents , Acidente Vascular Cerebral/diagnóstico por imagem , Hemorragia Subaracnóidea/diagnóstico por imagem , Trombectomia/efeitos adversos , Adolescente , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Infarto da Artéria Cerebral Média/cirurgia , Monitorização Neurofisiológica Intraoperatória/tendências , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Estudos Retrospectivos , Acidente Vascular Cerebral/cirurgia , Hemorragia Subaracnóidea/etiologia , Trombectomia/tendências , Adulto Jovem
10.
Front Surg ; 6: 73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998742

RESUMO

Complete spinal cord injury is a devastating occurrence afflicting millions of people worldwide with no available treatment for functional motor recovery. In this report, we describe a procedure in which we used parts of a device available for chronic pain treatment to provide a neuromodulation of motor nerve roots in a case with complete motor and sensory paraplegia. By using a retrograde trans-foraminal approach to implant electrodes close to L2-S1 motor nerve roots bilaterally, we were able to stimulate those nerves and induce precise movements at the joints of lower extremity in a T5 complete spinal cord injury case. We believe that our approach shows potential of the device as a rehabilitation system with the possibility of a parallel electric circuitry that can bridge a damaged spinal cord.

11.
Sci Rep ; 6: 28965, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377618

RESUMO

Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV "fossils" provide novel capsid sequences for use in translational research and clinical applications.


Assuntos
Dependovirus/classificação , Dependovirus/genética , Fósseis , Células Germinativas/virologia , Marsupiais/virologia , Animais , Biologia Computacional , Evolução Molecular
12.
Mol Ther ; 22(11): 1923-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200009

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.


Assuntos
Dependovirus/genética , Distrofina/genética , Membro Anterior/fisiopatologia , Distrofia Muscular de Duchenne/terapia , RNA Nuclear Pequeno/genética , Animais , Estudos de Coortes , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Éxons , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Infusões Intravenosas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , RNA Nuclear Pequeno/metabolismo
13.
PLoS One ; 8(8): e69879, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936358

RESUMO

Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9) Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.


Assuntos
DNA Recombinante/genética , DNA/genética , Dependovirus/genética , Dependovirus/fisiologia , Genoma Viral/genética , Transfecção/métodos , Replicação Viral , Animais , Engenharia Genética , Vetores Genéticos/genética , Masculino , Camundongos , Células Sf9 , Spodoptera , Fatores de Tempo
14.
Mol Ther ; 21(4): 739-49, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23439502

RESUMO

Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered.


Assuntos
Baculoviridae/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Insetos Vetores/virologia , Animais , Humanos
15.
Mol Ther ; 17(11): 1888-96, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19532142

RESUMO

Scalable methods of recombinant adeno-associated virus (rAAV) production have gained much recent interest as the field of rAAV-mediated gene therapy approaches the clinic. In particular, the production of rAAV vectors in insect cells via the use of recombinant baculovirus technology has proven to be an efficient and scalable means of rAAV production. Here, we describe a method for the production of rAAV serotypes 1 and 2 in insect cells using a simplified baculovirus-AAV expression vector system coupled with particle purification via affinity chromatography. The number of separate baculovirus constructs required for rAAV production was reduced by genetically modifying the AAV rep gene to allow expression of the AAV-encoded replication enzymes, Rep78 and Rep52, from a single mRNA species and combining the modified rep gene with an AAV cap gene expression cassette in a single baculovirus construct. Additionally, we describe lysis, binding, and elution conditions compatible with a commercially available affinity medium (AVB Sepharose High Performance) used to purify rAAV particles to near homogeneity in a single chromatography step. Using the described method, we obtained an average yield of 7 x 10(4) purified rAAV particles per cell (range: 3.7 x 10(4) to 9.6 x 10(4)) from suspension cultures of recombinant baculovirus-infected insect cells.


Assuntos
Baculoviridae/genética , Dependovirus/genética , Dependovirus/isolamento & purificação , Vetores Genéticos/genética , Vetores Genéticos/isolamento & purificação , Animais , Western Blotting , Linhagem Celular , Cromatografia de Afinidade , Dependovirus/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos/ultraestrutura , Microscopia Eletrônica de Transmissão , Spodoptera
16.
Methods Mol Biol ; 434: 37-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18470638

RESUMO

Virus-mediated gene transfer shows great potential as a therapeutic strategy for the management of various inherited and acquired human diseases. Among the current viral vectors, adeno-associated virus (AAV) has become the vector of choice for numerous gene therapy applications. As AAV-based vectors approach the clinic, the need for scalable methods of production and purification is steadily increasing. In this chapter, we present a column chromatography-based protocol for the purification of recombinant AAV type 1 (AAV-1) to near homogeneity. The protocol, which can be completed within one working day, employs three major purification steps: (1) polyethylene glycol-mediated vector precipitation, (2) anion-exchange chromatography, and (3) gel filtration chromatography. This method provides a basic strategy, or "platform," that can be adapted to the purification of other recombinant AAV vector serotypes.


Assuntos
Cromatografia em Gel/métodos , Cromatografia por Troca Iônica/métodos , Dependovirus/genética , Vetores Genéticos/isolamento & purificação , Western Blotting , Humanos
17.
J Virol Methods ; 114(2): 115-24, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14625046

RESUMO

Viral vectors derived from adeno-associated virus (AAV) are rapidly becoming the vehicles of choice for gene therapy applications. AAV-2 is the adeno-associated virus serotype most commonly employed in AAV-mediated gene therapy studies; however, recently developed vectors derived from alternative serotypes of AAV, such as AAV-5, are receiving special attention due to their disparate tissue tropisms and potential for serial administration. In this report, we describe a rapid and efficient method for the serum-free production and column purification of recombinant AAV-5 particles. This method utilizes a combination of anion-exchange chromatography and gel filtration chromatography to purify recombinant AAV particles to near homogeneity. Importantly, viral particles are captured directly from cellular extracts with high efficiency, and vector purification is achieved in less than one working day with a minimal amount of sample manipulation. The method described in this report does not require partial purification by density centrifugation, detergent treatment, or solvent extraction to achieve efficient levels of column binding and vector purification.


Assuntos
Dependovirus/crescimento & desenvolvimento , Dependovirus/isolamento & purificação , Vetores Genéticos , Animais , Células COS , Cromatografia em Gel , Cromatografia por Troca Iônica , Meios de Cultura Livres de Soro , Dependovirus/genética , Terapia Genética/métodos , Humanos , Recombinação Genética , Transdução Genética , Vírion/genética , Vírion/isolamento & purificação
18.
Biotechniques ; 33(1): 204-6, 208, 210-1, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12139247

RESUMO

Adeno-associated viruses (AAVs) are replication-defective parvoviruses that require helper virusfunctionsfor efficient productive replication. The AAVs are currently premier candidates as vectors for human gene therapy applications. In particular; much recent interest has been expressed concerning recombinant AAV serotype 5 (rAAV-5) vectors, as they appear to utilize cellular receptors distinctfrom those of the prototypical AAV serotype (AAV-2) and have been reported to have transduction properties in vivo that differ significantly from those of the prototype. One of the most popular current methodsfor the production of rAAVs involves co-transfection of human 293 cells with three plasmids: (i) an adenovirus (Ad)-derived helper plasmid containing Ad genes required for AAV replication, (ii) an AAV-derived plasmid encoding complementing AAV genes (ie., the viral rep and cap genes), and (iii) a target plasmid containing a transgene of interestflanked by AAV inverted terminal repeats (ITRs) that confer packaging and replication capabilities upon the ITR-flanked heterologous DNA. Here we describe novel plasmid reagents designed for convenient and efficient production of rAAV-S. An integrated helper plasmid containing all Ad genes requiredfor the efficient production of recombinant AAV as well as the complementing AAV genes on the same plasmid backbone, was constructed via transposase-mediated insertion into an Ad helper plasmid of a transposable element containing the AAV-5 rep and cap genes linked to a selectable marker This simple strategy can be used in the rapid and efficient construction of integrated helper plasmids derived from any reported AAV serotype for which a molecular clone exists.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Plasmídeos/genética , Recombinação Genética , Transposases/genética , Replicação Viral/genética , Animais , Células Cultivadas , Clonagem Molecular , Haplorrinos , Humanos , Rim/embriologia , Rim/imunologia , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA