Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Regul Toxicol Pharmacol ; 86: 356-365, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28389324

RESUMO

Prolonged treatment with human parathyroid hormone (hPTH) in rats results in development of bone tumors, though this finding has not been supported by clinical experience. The PTH type 1 receptor agonist abaloparatide, selected for its bone anabolic activity, is under clinical development to treat postmenopausal women with osteoporosis. To determine the carcinogenic potential of abaloparatide, Fischer (F344) rats were administered SC daily abaloparatide at doses of 0, 10, 25, and 50 µg/kg or 30 µg/kg hPTH(1-34) as a positive control for up to 2 years. Robust increases in bone density were achieved at all abaloparatide doses and with hPTH(1-34). Comprehensive histopathological analysis reflected a comparable continuum of proliferative changes in bone, mostly osteosarcoma, in both abaloparatide and hPTH(1-34) treated rats. Comparing the effects of abaloparatide and hPTH(1-34) at the 25 and 30 µg/kg respective doses, representing similar exposure multiples to the human therapeutic doses, revealed similar osteosarcoma-associated mortality, tumor incidence, age at first occurrence, and metastatic potential. There were no increases in the incidence of non-bone tumors with abaloparatide compared to vehicle. Thus, near life-long treatment with abaloparatide in rats resulted in dose and time dependent formation of osteosarcomas, with a comparable response to hPTH(1-34) at similar exposure.


Assuntos
Conservadores da Densidade Óssea/toxicidade , Neoplasias Ósseas/induzido quimicamente , Osteossarcoma/induzido quimicamente , Proteína Relacionada ao Hormônio Paratireóideo/toxicidade , Hormônio Paratireóideo/toxicidade , Animais , Conservadores da Densidade Óssea/administração & dosagem , Neoplasias Ósseas/epidemiologia , Feminino , Humanos , Incidência , Osteossarcoma/epidemiologia , Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Ratos , Ratos Endogâmicos F344
2.
J Bone Miner Res ; 32(1): 24-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27748532

RESUMO

Abaloparatide is a novel 34-amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor (PTH1R) signaling pathway with 41% homology to PTH(1-34) and 76% homology to PTHrP(1-34). A 12-month treatment study was conducted in osteopenic ovariectomized (OVX) rats to characterize the mechanisms by which abaloparatide increases bone mass. Sprague-Dawley (SD) rats were subjected to OVX or sham surgery at age 6 months and left untreated for 3 months to allow OVX-induced bone loss. Ten OVX rats were euthanized after this bone depletion period, and the remaining OVX rats received daily subcutaneous injections of vehicle (n = 18) or abaloparatide at 1, 5, or 25 µg/kg/d (n = 18/dose level) for 12 months. Sham controls (n = 18) received vehicle daily. Bone densitometry and biochemical markers of bone formation and resorption were assessed longitudinally, and L3 vertebra and tibia were collected at necropsy for histomorphometry. Abaloparatide increased biochemical bone formation markers without increasing bone resorption markers or causing hypercalcemia. Abaloparatide increased histomorphometric indices of bone formation on trabecular, endocortical, and periosteal surfaces without increasing osteoclasts or eroded surfaces. Abaloparatide induced substantial increases in trabecular bone volume and density and improvements in trabecular microarchitecture. Abaloparatide stimulated periosteal expansion and endocortical bone apposition at the tibial diaphysis, leading to marked increases in cortical bone volume and density. Whole-body bone mineral density (BMD) remained stable in OVX-Vehicle controls while increasing 25% after 12 months of abaloparatide (25 µg/kg). Histomorphometry and biomarker data suggest that gains in cortical and trabecular bone mass were attributable to selective anabolic effects of abaloparatide, without evidence for stimulated bone resorption. © 2016 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Osteogênese , Ovariectomia , Proteína Relacionada ao Hormônio Paratireóideo/uso terapêutico , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Absorciometria de Fóton , Animais , Biomarcadores/sangue , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/patologia , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/sangue , Reabsorção Óssea/fisiopatologia , Osso e Ossos/efeitos dos fármacos , Densitometria , Tamanho do Órgão/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Ratos Sprague-Dawley
3.
Bone ; 95: 143-150, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27894941

RESUMO

Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25µg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to osteopenic OVX rats led to dose-dependent improvements in bone mass, geometry and strength.


Assuntos
Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Ovariectomia , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Animais , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Densitometria , Feminino , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X
4.
Regul Toxicol Pharmacol ; 81: 212-222, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27569204

RESUMO

Romosozumab is a humanized immunoglobulin G2 monoclonal antibody that binds and blocks the action of sclerostin, a protein secreted by the osteocyte and an extracellular inhibitor of canonical Wnt signaling. Blockade of sclerostin binding to low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) allows Wnt ligands to activate canonical Wnt signaling in bone, increasing bone formation and decreasing bone resorption, making sclerostin an attractive target for osteoporosis therapy. Because romosozumab is a bone-forming agent and an activator of canonical Wnt signaling, questions have arisen regarding a potential carcinogenic risk. Weight-of-evidence factors used in the assessment of human carcinogenic risk of romosozumab included features of canonical Wnt signaling, expression pattern of sclerostin, phenotype of loss-of-function mutations in humans and mice, mode and mechanism of action of romosozumab, and findings from romosozumab chronic toxicity studies in rats and monkeys. Although the weight-of-evidence factors supported that romosozumab would pose a low carcinogenic risk to humans, the carcinogenic potential of romosozumab was assessed in a rat lifetime study. There were no romosozumab-related effects on tumor incidence in rats. The findings of the lifetime study and the weight-of-evidence factors collectively indicate that romosozumab administration would not pose a carcinogenic risk to humans.


Assuntos
Anticorpos Monoclonais/toxicidade , Neoplasias/induzido quimicamente , Animais , Anticorpos Monoclonais/administração & dosagem , Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Humanos , Camundongos , Ratos , Medição de Risco
5.
J Orthop Res ; 34(1): 72-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26178170

RESUMO

The effects of the cathepsin K inhibitor odanacatib (ODN) on fracture healing were monitored for ~6 and 15 weeks post-fracture in two separate studies using the unilateral transverse mid-ulnar osteotomy model in skeletally mature female rabbits. Rabbits were pre-treated for 3-4 weeks with vehicle (Veh), ODN (2 mg/kg, po, daily), or alendronate (ALN) (0.3 mg/kg, sc, twice-weekly) prior to osteotomy. In Study 1, the animals were maintained on the same respective treatment for ~6 weeks. In Study 2, the animals were also continued on the same therapy or switched from Veh to ODN or ODN to Veh for 15 weeks. No treatment-related impairment of fracture union was seen by qualitative histological assessments in the first study. Cartilage retention was detected in the calluses of ALN-treated rabbits at week-6, while calluses in the ODN and Veh groups contained bony tissue with significantly less residual cartilage. ODN treatment also markedly increased the number of cathepsin K-(+) osteoclasts in the callus, indicating enhanced callus remodeling. From the second study, ex vivo DXA and pQCT confirmed that ODN treatment pre- and post-osteotomy increased callus bone mineral content and bone mineral density (BMD) versus Veh (p < 0.001) and discontinuation of ODN post-surgery returned callus BMD to Veh. Peak load of ODN- or ALN-treated calluses were comparable to Veh. ODN increased callus yield load (20%, p = 0.056) and stiffness (26%, p < 0.05) versus Veh. These studies demonstrated that ODN increased mineralized callus during the early phase of fracture repair without impairing callus formation or biomechanical integrity at the fracture site.


Assuntos
Compostos de Bifenilo/uso terapêutico , Calo Ósseo/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Alendronato/farmacologia , Alendronato/uso terapêutico , Animais , Compostos de Bifenilo/farmacologia , Feminino , Osteotomia , Coelhos , Distribuição Aleatória , Ulna
6.
J Bone Miner Metab ; 33(2): 161-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24633538

RESUMO

Bazedoxifene (BZA) is a novel selective estrogen receptor modulator in clinical development for the prevention and treatment of postmenopausal osteoporosis. This preclinical study evaluated the efficacy and safety of BZA in preventing ovariectomy (OVX)-induced bone loss in aged cynomolgus monkeys. Animals (18 per group) underwent OVX and were administered BZA (0.2, 0.5, 1, 5, or 25 mg/kg/day) or vehicle, or were sham-operated and administered vehicle, by daily oral gavage for 18 months. Biochemical markers of bone turnover were assessed at 6, 12, and 18 months, along with bone densitometry using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Animals were killed after 18 months. Uterine and pituitary weights were determined, and histomorphometric and biomechanical measurements were performed. OVX vehicle controls showed increases in bone turnover associated with cancellous and cortical bone osteopenia (in vivo), and slight decreases (not statistically significant) in biomechanical strength parameters at the lumbar spine and femoral neck. BZA partially preserved cortical and cancellous bone mass by preventing the OVX-induced increases in bone turnover. Although the response was often similar among BZA-treated groups, the strongest efficacy was generally seen at 25 mg/kg/day. Treatment with BZA did not adversely affect measures of bone strength and was well tolerated; there was no evidence of uterotrophic activity, mammary tissue was unaffected, and there were no adverse effects on plasma lipids. Treatment of ovariectomized animals with BZA partially prevented changes in bone remodeling that correlated with increases in bone mineral density, while maintaining bone strength and a favorable safety profile.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Indóis/farmacologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Absorciometria de Fóton/métodos , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Humanos , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/metabolismo , Macaca fascicularis , Osteoporose Pós-Menopausa/metabolismo , Ovariectomia/métodos , Moduladores Seletivos de Receptor Estrogênico/metabolismo
7.
J Endocrinol ; 212(2): 179-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22062085

RESUMO

Peroxisome proliferator-activated receptor (PPAR) γ agonists, such as pioglitazone (Pio), improve glycemia and lipid profile but are associated with bone loss and fracture risk. Data regarding bone effects of PPARα agonists (including fenofibrate (Feno)) are limited, although animal studies suggest that Feno may increase bone mass. This study investigated the effects of a 13-week oral combination treatment with Pio (10 mg/kg per day)+Feno (25 mg/kg per day) on body composition and bone mass parameters compared with Pio or Feno alone in adult ovariectomized (OVX) rats, with a 4-week bone depletion period, followed by a 6-week treatment-free period. Treatment of OVX rats with Pio+Feno resulted in ∼50% lower fat mass gain compared with Pio treatment alone. Combination treatment with Pio+Feno partially prevented Pio-induced loss of bone mineral content (∼45%) and bone mineral density (BMD; ∼60%) at the lumbar spine. Similar effects of treatments were observed at the femur, most notably at sites rich in trabecular bone. At the proximal tibial metaphysis, concomitant treatment with Pio+Feno prevented Pio exacerbation of ovariectomy-induced loss of trabecular bone, resulting in BMD values in the Pio+Feno group comparable to OVX controls. Discontinuation of Pio or Feno treatment of OVX rats was associated with partial reversal of effects on bone loss or bone mass gain, respectively, while values in the Pio+Feno group remained comparable to OVX controls. These data suggest that concurrent/dual agonism of PPARγ and PPARα may reduce the negative effects of PPARγ agonism on bone mass.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/prevenção & controle , Fenofibrato/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , PPAR alfa/agonistas , PPAR gama/agonistas , Tiazolidinedionas/efeitos adversos , Adiposidade/efeitos dos fármacos , Animais , Biomarcadores/sangue , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/etiologia , Osso e Ossos/química , Osso e Ossos/efeitos dos fármacos , Colágeno Tipo I/sangue , Quimioterapia Combinada , Feminino , Fenofibrato/administração & dosagem , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/administração & dosagem , Hipolipemiantes/efeitos adversos , Hipolipemiantes/uso terapêutico , Osteocalcina/sangue , Osteoporose Pós-Menopausa/sangue , Osteoporose Pós-Menopausa/fisiopatologia , Ovariectomia , Peptídeos/sangue , Pioglitazona , Distribuição Aleatória , Ratos , Tiazolidinedionas/administração & dosagem , Tiazolidinedionas/uso terapêutico
8.
Bone ; 49(3): 376-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21658483

RESUMO

A novel approach to menopausal therapy is the tissue selective estrogen complex (TSEC) that partners bazedoxifene (BZA) with conjugated estrogens (CE). We examined the effects of daily treatment with BZA 0.3mg/kg, CE 2.5mg/kg, or combined BZA/CE (BZA 0.1, 0.3, or 1.0mg/kg with CE 2.5mg/kg) over 12months on bone mass, bone architecture and strength, and biochemical markers of bone turnover in ovariectomized (OVX) female Sprague-Dawley rats vs OVX control rats. Total cholesterol and uterine weights were also evaluated. All BZA/CE dose combinations prevented ovariectomy-induced increases in bone turnover and significantly increased bone mineral density (BMD) at the lumbar spine, proximal femur, and tibia compared with OVX controls. All BZA/CE doses evaluated also prevented many of the ovariectomy-induced changes of the static and dynamic parameters of the cortical compartment of the tibia and the cancellous compartment of the L1 and L2 vertebrae. All BZA/CE doses increased biomechanical strength at the lumbar spine (L4) compared with OVX animals. The co-administration of BZA 0.3 and 1.0mg/kg/day with CE 2.5mg/kg/day showed a dose-dependent reduction in uterine wet weight compared with administration of CE alone. All BZA/CE doses significantly lowered total cholesterol levels compared with OVX controls. In conclusion, 12months of treatment with BZA/CE in OVX rats effectively maintained BMD, bone microstructure, and bone quality; and the pairing of BZA with CE prevented CE-induced uterine stimulation.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Estrogênios Conjugados (USP)/farmacologia , Estrogênios/farmacologia , Indóis/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Biomarcadores/metabolismo , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/anatomia & histologia , Feminino , Fêmur/anatomia & histologia , Fêmur/efeitos dos fármacos , Fêmur/fisiologia , Humanos , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/fisiologia , Tamanho do Órgão , Ovariectomia , Ratos , Ratos Sprague-Dawley , Tíbia/anatomia & histologia , Tíbia/efeitos dos fármacos , Tíbia/fisiologia , Útero/anatomia & histologia , Útero/efeitos dos fármacos
9.
J Bone Miner Res ; 26(5): 1012-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21542004

RESUMO

Therapeutic enhancement of fracture healing would help to prevent the occurrence of orthopedic complications such as nonunion and revision surgery. Sclerostin is a negative regulator of bone formation, and treatment with a sclerostin monoclonal antibody (Scl-Ab) results in increased bone formation and bone mass in animal models. Our objective was to investigate the effects of systemic administration of Scl-Ab in two models of fracture healing. In both a closed femoral fracture model in rats and a fibular osteotomy model in cynomolgus monkeys, Scl-Ab significantly increased bone mass and bone strength at the site of fracture. After 10 weeks of healing in nonhuman primates, the fractures in the Scl-Ab group had less callus cartilage and smaller fracture gaps containing more bone and less fibrovascular tissue. These improvements at the fracture site corresponded with improvements in bone formation, bone mass, and bone strength at nonfractured cortical and trabecular sites in both studies. Thus the potent anabolic activity of Scl-Ab throughout the skeleton also was associated with an anabolic effect at the site of fracture. These results support the potential for systemic Scl-Ab administration to enhance fracture healing in patients.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Densidade Óssea/efeitos dos fármacos , Fraturas do Fêmur/fisiopatologia , Consolidação da Fratura/efeitos dos fármacos , Glicoproteínas/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Diáfises/efeitos dos fármacos , Diáfises/patologia , Diáfises/fisiopatologia , Modelos Animais de Doenças , Fêmur/efeitos dos fármacos , Fêmur/patologia , Fêmur/fisiopatologia , Fíbula/efeitos dos fármacos , Fíbula/patologia , Fíbula/fisiopatologia , Glicoproteínas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Macaca fascicularis , Masculino , Tamanho do Órgão/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteotomia , Ratos , Ratos Sprague-Dawley
10.
Bone ; 49(2): 151-61, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21457806

RESUMO

This study examined the effects of denosumab, an anti-RANKL antibody that inhibits bone resorption, on bone histomorphometry in adult ovariectomized cynomolgus monkeys (OVX cynos). A month after surgery, OVX cynos were treated with subcutaneous vehicle (OVX-Veh) or denosumab (25 or 50mg/kg/month) for 16months (n=14-20/group). Sham controls were treated with vehicle (Sham-Veh; n=17). Areal and volumetric BMD, urine NTx, and serum osteocalcin were measured at baseline and months 3, 6, 12, and 16. Double fluorochrome labels were injected prior to iliac and rib biopsies at month 6 and month 12, and prior to sacrifice at month 16. Histomorphometry was performed on these biopsies, the tibial diaphysis, the L2 vertebra, and the proximal femur. Strength of humeral cortical beams, femur diaphysis, femur neck, and trabecular cores of L5-L6 vertebrae was determined by destructive biomechanical testing. There was no evidence of woven bone, osteomalacia, or other bone histopathologic changes with OVX or with denosumab. OVX-Veh animals exhibited significantly greater bone remodeling at all skeletal sites relative to Sham-Veh controls. Both doses of denosumab markedly inhibited bone remodeling at all sites, including significant reductions in trabecular eroded surfaces (48-86% lower than OVX-Veh controls), cortical porosity (28-72% lower), and dynamic parameters of bone formation (81-100% lower). Decreased fluorochrome labeling with denosumab was related to reductions in cortical porosity and trabecular eroded surfaces, and regression analyses suggested that these reductions contributed to denosumab-related increments in BMD and bone strength. Denosumab-treated animals with the lowest levels of fluorescent labeling exhibited the greatest structural bone strength values at each site. Intracortical remodeling had no relationship with material properties including ultimate strength, elastic modulus or toughness (r(2)=0.00-0.01). These data suggest that remodeling inhibition with denosumab improved structural strength without altering material properties under these experimental conditions. Greater structural strength in the denosumab-treated animals can be primarily explained by the combined effects of increased trabecular and cortical bone mass, and reductions in trabecular eroded surfaces and cortical porosity.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Osso e Ossos/efeitos dos fármacos , Ovariectomia , Ligante RANK/uso terapêutico , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/urina , Anticorpos Monoclonais Humanizados , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Denosumab , Feminino , Humanos , Macaca fascicularis , Ligante RANK/sangue , Ligante RANK/farmacocinética , Ligante RANK/urina
11.
Bone ; 49(2): 162-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21497676

RESUMO

Denosumab is a fully human monoclonal antibody that inhibits RANKL, a protein essential for osteoclast formation, function, and survival. Osteoclast inhibition with denosumab decreased bone resorption, increased bone mineral density (BMD), and reduced fracture risk in osteoporotic women. The effects of 16months of continuous osteoclast inhibition on bone strength parameters were examined in adult ovariectomized (OVX) cynomolgus monkeys (cynos). One month after surgery, OVX cynos (n=14-20/group) were treated monthly with subcutaneous vehicle (OVX-Veh) or denosumab (25 or 50mg/kg). Sham-operated controls were treated with vehicle (n=17). OVX-Veh exhibited early and persistent increases in the resorption marker CTx, followed by similar increases in the formation marker BSAP, consistent with increased bone remodeling. Denosumab reduced CTx and BSAP throughout the study to levels significantly lower than in OVX-Veh or Sham-Veh, consistent with reduced remodeling. Increased remodeling in OVX-Veh led to absolute declines in areal BMD of 4.3-7.4% at the lumbar spine, total hip, femur neck, and distal radius (all p<0.05 vs baseline). Denosumab significantly increased aBMD at each site to levels exceeding baseline or OVX-Veh controls, and denosumab significantly increased cortical vBMC of the central radius and tibia by 7% and 14% (respectively) relative to OVX-Veh. Destructive biomechanical testing revealed that both doses of denosumab were associated with significantly greater peak load for femur neck (+19-34%), L3-L4 vertebral bodies (+54-55%), and L5-L6 cancellous cores (+69-82%) compared with OVX-Veh. Direct assessment of bone tissue material properties at cortical sites revealed no significant changes with denosumab. For all sites analyzed biomechanically, bone mass (BMC) and strength (load) exhibited strong linear correlations (r(2)=0.59-0.85 for all groups combined). Denosumab did not alter slopes of load-BMC regressions at any site, and denosumab groups exhibited similar or greater load values at given BMC values compared with OVX-Veh or Sham. In summary, denosumab markedly reduced biochemical markers of bone remodeling and increased cortical and trabecular bone mass in adult OVX cynos. Denosumab improved structural bone strength parameters at all sites analyzed, and strength remained highly correlated with bone mass. There was no evidence for reduced material strength properties of cortical bone with denosumab over this time period, which approximates to 4years of remodeling in the slower-remodeling adult human skeleton. These data indicate that denosumab increased bone strength by increasing bone mass and preserving bone quality.


Assuntos
Anticorpos Monoclonais/farmacologia , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Ovariectomia , Ligante RANK/farmacologia , Animais , Anticorpos Monoclonais Humanizados , Remodelação Óssea , Denosumab , Feminino , Humanos , Macaca fascicularis
12.
J Bone Miner Res ; 26(2): 252-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20734451

RESUMO

Two cathepsin K inhibitors (CatKIs) were compared with alendronate (ALN) for their effects on bone resorption and formation in ovariectomized (OVX) rabbits. The OVX model was validated by demonstrating significant loss (9.8% to 12.8%) in lumbar vertebral bone mineral density (LV BMD) in rabbits at 13-weeks after surgery, which was prevented by estrogen or ALN. A potent CatKI, L-006235 (L-235), dosed at 10 mg/kg per day for 27 weeks, significantly decreased LV BMD loss (p < .01) versus OVX-vehicle control. ALN reduced spine cancellous mineralizing surface by 70%, whereas L-235 had no effect. Similarly, endocortical bone-formation rate and the number of double-labeled Haversian canals in the femoral diaphysis were not affected by L-235. To confirm the sparing effects of CatKI on bone formation, odanacatib (ODN) was dosed in food to achieve steady-state exposures of 4 or 9 µM/day in OVX rabbits for 27 weeks. ODN at both doses prevented LV BMD loss (p < .05 and p < .001, respectively) versus OVX-vehicle control to levels comparable with sham or ALN. ODN also dose-dependently increased BMD at the proximal femur, femoral neck, and trochanter. Similar to L-235, ODN did not reduce bone formation at any bone sites studied. The positive and highly correlative relationship of peak load to bone mineral content in the central femur and spine suggested that ODN treatment preserved normal biomechanical properties of relevant skeletal sites. Although CatKIs had similar efficacy to ALN in preventing bone loss in adult OVX rabbits, this novel class of antiresorptives differs from ALN by sparing bone formation, potentially via uncoupling bone formation from resorption.


Assuntos
Doenças Ósseas Metabólicas/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Catepsina K/antagonistas & inibidores , Alendronato/uso terapêutico , Animais , Compostos de Bifenilo/uso terapêutico , Densidade Óssea , Reabsorção Óssea , Densitometria , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Feminino , Fêmur/efeitos dos fármacos , Ósteon/efeitos dos fármacos , Coelhos
13.
Anesth Analg ; 109(1): 249-57, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19535718

RESUMO

BACKGROUND: A novel formulation of > or = 98% pure capsaicin (4975) is currently undergoing clinical investigation using novel routes of delivery to provide selective analgesia lasting weeks to months with a single dose. We conducted this study to assess the safety and effects of instilled and injected 4975 in rat models of wound healing osteotomy repair and sensory-motor nerve function. METHODS: Adult male and female Sprague-Dawley rats were used. To assess the effects of 4975 on nerve or muscle, 0.0083 or 0.025 mg 4975 or vehicle (25% polyethylene glycol-300) was applied to exposed sciatic nerve, or 0.1 mg 4975 or vehicle was injected into the surrounding muscle (Group 1). To assess the effect of 4975 on bone healing, an osteotomy was made in one femur and 0.5 mg of 4975 or vehicle was instilled into the site (Group 2). Behavioral testing was performed on both groups of rats and histological evaluation of the sciatic nerve, and surrounding soft tissue and bone was done at days 3, 14, and 28 after surgery. Femurs from osteotomy rats were assessed using peripheral quantitative computed tomography and biomechanical testing. Standard statistical tests were used to compare groups. RESULTS: Rats with direct application of 4975 to the sciatic nerve and surrounding muscle were no different from the controls in nociceptive sensory responses (F = 0.910, P = 0.454), grip strength (F = 0.550, P = 0.654), or histology of the muscle or sciatic nerve. In osteotomy rats, there were no statistical differences between 4975 and vehicle-treated rats for bone area (H = 2.858, P = 0.414), bone mineral content (F = 0.945, P = 0.425), or bone mineral density (F = 0.87, P = 0.462) and no difference in soft tissue healing. There were neither differences in bone stiffness (F = 1.369, P = 0.268) nor were there noticeable differences in the macro- or microscopic appearance of the right femur osteotomy healing site and surrounding soft tissues between the control group and the 4975-treated animals. CONCLUSION: A single, clinically relevant application of instilled or injected 4975 has no observable adverse effect on wound and bone healing after osteotomy or on the structural integrity of exposed muscle and nerve.


Assuntos
Capsaicina/administração & dosagem , Membro Posterior/efeitos dos fármacos , Osteotomia , Desempenho Psicomotor/efeitos dos fármacos , Animais , Capsaicina/efeitos adversos , Feminino , Membro Posterior/patologia , Membro Posterior/fisiologia , Injeções Intramusculares , Instilação de Medicamentos , Masculino , Osteotomia/métodos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
14.
J Bone Miner Res ; 22(2): 260-73, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17087625

RESUMO

UNLABELLED: Histomorphometric studies of treatments for osteoporosis in humans are restricted to iliac crest biopsies. We studied the effects of PTH(1-84) treatment at the lumbar spine of skeletally mature ovariectomized rhesus monkeys. PTH increased bone turnover, rapidly normalized BMD, and increased vertebral compressive strength. PTH increased trabecular bone volume primarily by increasing trabecular number by markedly increasing intratrabecular tunneling. INTRODUCTION: Histomorphometric studies of the anabolic properties of PTH(1-84) (PTH) and related peptides in human bone are restricted to iliac crest biopsies. The ovariectomized (OVX) monkey is an accepted model of human postmenopausal bone loss and was used to study the effects of PTH treatment at clinically relevant skeletal sites. MATERIALS AND METHODS: Skeletally mature rhesus monkeys were OVX or sham-operated and, after a bone depletion period of 9 months, treated daily for 16 months with PTH (5, 10, or 25 microg/kg). Markers of bone formation (serum osteocalcin) and resorption (urine N-telopeptide [NTX]) and lumbar spine BMD were measured throughout the study. Trabecular architecture and vertebral biomechanical properties were quantified at 16 months. RESULTS: PTH treatment induced dose-dependent increases in bone turnover but did not increase serum calcium. Osteocalcin was significantly increased above OVX controls by 1 month. NTX was significantly elevated at 1 month with the highest dose, but not until 12 months with the 5 and 10 microg/kg doses. Lumbar spine BMD was 5% lower in OVX than in sham animals when treatment was started. All PTH doses increased BMD rapidly, with sham levels restored by 3-7 months with 10 and 25 microg/kg and by 16 months with 5 microg/kg. PTH treatment increased trabecular bone volume (BV/TV), primarily by increasing trabecular number, and dose-dependently increased bone formation rate (BFR) solely by increasing mineralizing surface. The largest effects on BV/TV and yield load occurred with the 10 microg/kg dose. The highest dose reduced trabecular thickness by markedly increasing intratrabecular tunneling. CONCLUSIONS: PTH treatment of OVX rhesus monkeys increased bone turnover and increased BV/TV, BMD, and strength at the lumbar spine. All PTH doses were safe, but the 10 microg/kg dose was generally optimal, possibly because the highest dose resulted in too marked a stimulation of bone remodeling.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Vértebras Lombares/anatomia & histologia , Ovariectomia , Hormônio Paratireóideo/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Biomarcadores/sangue , Fenômenos Biomecânicos , Densidade Óssea , Colágeno Tipo I/sangue , Estradiol/sangue , Feminino , Macaca mulatta , Osteocalcina/sangue , Peptídeos/sangue , Radioimunoensaio , Análise de Regressão
15.
Toxicol Pathol ; 34(7): 929-40, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17178693

RESUMO

The carcinogenic potential of human parathyroid hormone 1-84 (PTH) was assessed by daily subcutaneous injection (0, 10, 50, 150 microg/kg/day) for 2 years in Fischer 344 rats. Histopathological analyses were conducted on the standard set of soft tissues, tissues with macroscopic abnormalities, selected bones, and bones with abnormalities identified radiographically. All PTH doses caused widespread osteosclerosis and significant, dose-dependent increases in femoral and vertebral bone mineral content and density. In the mid-and high-dose groups, proliferative changes in bone increased with dose. Osteosarcoma was the most common change, followed by focal osteoblast hyperplasia, osteoblastoma, osteoma and skeletal fibrosarcoma. The incidence of bone neoplasms was comparable in control and low-dose groups providing a noncarcinogenic dose for PTH of 10 microg/kg/day at a systemic exposure to PTH that is 4.6-fold higher than for a 100 microg dose in humans. The ability of PTH to interact with and balance the effects of both the PTH-1 receptor and the putative C-terminal PTH receptor, may lead to the lower carcinogenic potential observed with PTH than reported previously for teriparatide.


Assuntos
Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/toxicidade , Animais , Área Sob a Curva , Densidade Óssea/efeitos dos fármacos , Neoplasias Ósseas/induzido quimicamente , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Densitometria , Feminino , Fibrossarcoma/induzido quimicamente , Fibrossarcoma/diagnóstico por imagem , Fibrossarcoma/patologia , Humanos , Hiperplasia/induzido quimicamente , Hiperplasia/diagnóstico por imagem , Hiperplasia/patologia , Injeções Subcutâneas , Masculino , Osteoblastoma/induzido quimicamente , Osteoblastoma/diagnóstico por imagem , Osteoblastoma/patologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteossarcoma/induzido quimicamente , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Osteosclerose/induzido quimicamente , Osteosclerose/diagnóstico por imagem , Osteosclerose/patologia , Hormônio Paratireóideo/farmacocinética , Radiografia , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/toxicidade , Fatores Sexuais
16.
Arthritis Rheum ; 54(9): 2886-90, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16947421

RESUMO

OBJECTIVE: To investigate changes in the circulating levels of the C-telopeptide of type II collagen (CTX-II) with relation to disease onset and structural damage of cartilage in a rodent model of collagen-induced arthritis (CIA), and to investigate immunolocalization of the CTX-II epitope in the articular cartilage of affected joints. METHODS: Seven-week-old female Lewis rats were immunized with type II collagen and monitored using blood sampling at weekly intervals. At study termination (day 23), the animals were killed, synovial fluid was collected, and the affected joints were scored macroscopically for disease severity and underwent immunohistochemical evaluation. RESULTS: At the time of disease onset (day 15), which was characterized by redness and swelling of the affected joints (mean +/- SD macroscopic severity score 9.1 +/- 1.6), there was a 355% increase in serum CTX-II levels. The early change in serum CTX-II from day 0 to day 15 showed a significant association with the severity of cartilage damage (r = 0.61, P < 0.01). Immunostaining revealed extensive presence of the CTX-II epitope in the damaged, uncalcified cartilage tissue. CONCLUSION: The elevation in serum CTX-II concomitant with the onset of disease and proportional to cartilage damage demonstrates that CTX-II is a sensitive diagnostic tool for monitoring joint disease in the rodent model of CIA. Furthermore, the immunohistochemical findings are consistent with the concept that the major source of serum CTX-II is the damaged articular cartilage.


Assuntos
Artrite Experimental/sangue , Artrite Experimental/patologia , Cartilagem Articular/patologia , Colágeno Tipo I/sangue , Peptídeos/sangue , Animais , Colágeno , Modelos Animais de Doenças , Feminino , Articulações/patologia , Ratos , Ratos Endogâmicos Lew
17.
Int J Toxicol ; 22(5): 403-12, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14555415

RESUMO

Osteoprotegerin (OPG) is a novel secreted glycoprotein of the tumor necrosis factor (TNF) receptor superfamily that acts as an antiresorptive agent inhibiting osteoclast maturation. OPG acts by competitively inhibiting the association of the OPG ligand with the RANK receptor on osteoclasts and osteoclast precursors. This inhibition of osteoclasts can lead to excess accumulation of newly synthesized bone and cartilage in vivo. The purpose of this study was to investigate the potential toxicity of a human recombinant form of OPG in the young cynomolgus monkey. OPG was administered by intravenous (i.v.) or subcutaneous (s.c.) injection three times per week for either 4 or 13 weeks. There were no deaths during the study, no clinical signs related to treatment, no effect on body weight, appetence, or ophthalmology. No toxicologically relevant changes in routine laboratory investigations, organ weights, or gross or histopathological findings were observed. Serum ionized calcium and phosphorus were decreased at all dose levels. Evaluations were performed to monitor biochemical markers of bone resorption (N-telopeptide [NTx], deoxypyridinoline [DPD]), bone formation (skeletal alkaline phosphatase [sALP], osteocalcin [OC]), parathyroid hormone [PTH], and bone density of the proximal tibia and distal radius in vivo. Dose-related decreases in NTx and/or DPD were observed at each dose level, with up to a 90% decrease in NTx noted for animals treated i.v. or s.c. at 15 mg/kg. Similar decreases were observed for sALP and OC. PTH was increased for animals treated at 5 and 15 mg/kg (i.v. or s.c.). Trabecular bone density was increased for the majority of males and females treated i.v. or s.c. at 15 mg/kg and males treated i.v. at 5 mg/kg. Microscopic examination of the sternebrae revealed corresponding increases in bone. Decreases in markers of bone turnover, and corresponding increases in bone density, were consistent with the pharmacological action of OPG as an osteoclast inhibitor. The no-observable-adverse-effect level (NOAEL) of OPG was 15 mg/kg.


Assuntos
Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/induzido quimicamente , Glicoproteínas/toxicidade , Absorciometria de Fóton , Aminoácidos/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/metabolismo , Colágeno/urina , Colágeno Tipo I , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intravenosas , Injeções Subcutâneas , Macaca fascicularis , Masculino , Nível de Efeito Adverso não Observado , Osteocalcina/sangue , Osteoprotegerina , Hormônio Paratireóideo/sangue , Peptídeos/urina , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/efeitos dos fármacos , Rádio (Anatomia)/metabolismo , Receptores Citoplasmáticos e Nucleares , Receptores do Fator de Necrose Tumoral , Proteínas Recombinantes/toxicidade , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/metabolismo
18.
J Bone Miner Res ; 17(8): 1498-511, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12162504

RESUMO

Bisphosphonates inhibit bone loss through inhibition of osteoclast-mediated bone resorption. At low doses, vitamin D metabolites can prevent bone loss in models of osteopenia in rats by an antiresorptive effect, while at high doses they also stimulate osteoblast activity and show an anabolic effect. Therefore, combined therapy with bisphosphonates and vitamin D analogs might be expected to be more effective than either treatment alone. It was the aim of this study to compare the efficacy of risedronate and of the naturally occurring vitamin D hormone 1alpha,25-dihydroxyvitamin D3 (calcitriol), alone and in combination, for the prevention of ovariectomy-induced bone loss in rats. One hundred ten female 4-month-old Sprague-Dawley rats were used for this experiment. Ninety rats were bilaterally ovariectomized (OVX), 10 rats were sham-operated (SHAM), and 10 rats were killed at the time of surgery as a baseline control. Groups of rats (10 rats/group) received vehicle or daily doses of 0.1 mg or 0.5 mg of risedronate or 0.05 microg or 0.1 microg of calcitriol/kg body weight, alone and in combination. Both compounds were administered orally via gavage, commencing on the day after surgery. Although estrogen deficiency-induced bone loss was prevented by individual prophylactic administration of risedronate or calcitriol, OVX rats treated with a combination of risedronate and calcitriol had higher bone mineral density (BMD), cancellous bone area (B.Ar), and bone strength in long bones and vertebrae compared with rats receiving risedronate alone. Furthermore, calcitriol enhanced the suppressive effects of risedronate on osteoclast number and partially counteracted the suppressive effects of risedronate on bone formation and histomorphometric indices of osteoblast team performance. Risedronate did not reduce the anabolic effect of calcitriol, and at the high dose it normalized hypercalcemia in calcitriol-treated OVX rats. Therefore, this study in OVX rats suggests that combined therapy with bisphosphonates and vitamin D analogs may offer advantages over the treatment with bisphosphonates or vitamin D analogs alone.


Assuntos
Calcitriol/farmacologia , Ácido Etidrônico/análogos & derivados , Ácido Etidrônico/farmacologia , Osteoporose/prevenção & controle , Animais , Fenômenos Biomecânicos , Peso Corporal , Densidade Óssea , Calcitriol/administração & dosagem , Ácido Etidrônico/administração & dosagem , Feminino , Ovariectomia , Hormônio Paratireóideo/sangue , Ratos , Ratos Sprague-Dawley , Ácido Risedrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA