Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29472314

RESUMO

Protein-protein interactions have become attractive targets for both experimental and therapeutic interventions. The PSD-95/Dlg1/ZO-1 (PDZ) domain is found in a large family of eukaryotic scaffold proteins that plays important roles in intracellular trafficking and localization of many target proteins. Here, we seek inhibitors of the PDZ protein that facilitates post-endocytic degradation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR): the CFTR-associated ligand (CAL). We develop and validate biochemical screens and identify methyl-3,4-dephostatin (MD) and its analog ethyl-3,4-dephostatin (ED) as CAL PDZ inhibitors. Depending on conditions, MD can bind either covalently or non-covalently. Crystallographic and NMR data confirm that MD attacks a pocket at a site distinct from the canonical peptide-binding groove, and suggests an allosteric connection between target residue Cys319 and the conserved Leu291 in the GLGI motif. MD and ED thus appear to represent the first examples of small-molecule allosteric regulation of PDZ:peptide affinity. Their mechanism of action may exploit the known conformational plasticity of the PDZ domains and suggests that allosteric modulation may represent a strategy for targeting of this family of protein-protein binding modules.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Hidroquinonas/química , Hidroquinonas/farmacologia , Proteínas de Membrana/metabolismo , Domínios PDZ/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Regulação Alostérica/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Proteínas da Matriz do Complexo de Golgi , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras , Metilação , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular
3.
PLoS Negl Trop Dis ; 11(12): e0006157, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29287089

RESUMO

Leishmaniasis is a parasitic infection that afflicts approximately 12 million people worldwide. There are several limitations to the approved drug therapies for leishmaniasis, including moderate to severe toxicity, growing drug resistance, and the need for extended dosing. Moreover, miltefosine is currently the only orally available drug therapy for this infection. We addressed the pressing need for new therapies by pursuing a two-step phenotypic screen to discover novel, potent, and orally bioavailable antileishmanials. First, we conducted a high-throughput screen (HTS) of roughly 600,000 small molecules for growth inhibition against the promastigote form of the parasite life cycle using the nucleic acid binding dye SYBR Green I. This screen identified approximately 2,700 compounds that inhibited growth by over 65% at a single point concentration of 10 µM. We next used this 2700 compound focused library to identify compounds that were highly potent against the disease-causing intra-macrophage amastigote form and exhibited limited toxicity toward the host macrophages. This two-step screening strategy uncovered nine unique chemical scaffolds within our collection, including two previously described antileishmanials. We further profiled two of the novel compounds for in vitro absorption, distribution, metabolism, excretion, and in vivo pharmacokinetics. Both compounds proved orally bioavailable, affording plasma exposures above the half-maximal effective concentration (EC50) concentration for at least 12 hours. Both compounds were efficacious when administered orally in a murine model of cutaneous leishmaniasis. One of the two compounds exerted potent activity against trypanosomes, which are kinetoplastid parasites related to Leishmania species. Therefore, this compound could help control multiple parasitic diseases. The promising pharmacokinetic profile and significant in vivo efficacy observed from our HTS hits highlight the utility of our two-step phenotypic screening strategy and strongly suggest that medicinal chemistry optimization of these newly identified scaffolds will lead to promising candidates for an orally available anti-parasitic drug.


Assuntos
Antiprotozoários/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Administração Oral , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/efeitos adversos , Antiprotozoários/química , Linhagem Celular , Química Farmacêutica , Descoberta de Drogas , Feminino , Humanos , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo
4.
Bioorg Med Chem Lett ; 23(14): 4127-31, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23746473

RESUMO

We previously reported the phenylchloronitrobenzamides (PCNBs), a novel class of compounds active against the species of trypanosomes that cause Human African Trypanosomiasis (HAT). Herein, we explored the potential to adjust the reactivity of the electrophilic chloronitrobenzamide core. These studies identified compound 7d that potently inhibited the growth of trypanosomes (EC50=120nM for Trypanosoma b. brucei, 18nM for Trypanosoma b. rhodesiense, and 38nM for Trypanosoma b. gambiense) without significant cytotoxicity against mammalian cell lines (EC50>25µM for HepG2, HEK293, Raji, and BJ cell lines) and also had good stability in microsomal models (t1/2>4h in both human and mouse). Overall these properties indicate the compound 7d and its analogs are worth further exploration as potential leads for HAT.


Assuntos
Benzamidas/química , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Benzamidas/síntese química , Benzamidas/toxicidade , Linhagem Celular , Células Hep G2 , Humanos , Camundongos , Microssomos/metabolismo , Solubilidade , Tripanossomicidas/síntese química , Tripanossomicidas/toxicidade
5.
J Biomol Screen ; 18(8): 930-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23640875

RESUMO

Pharmacoperone drugs correct the folding of misfolded protein mutants and restore function (i.e., "rescue") by correcting the routing of (otherwise) misrouted mutants. Assays for pharmacoperones have not been applied to screen large libraries previously. Currently, most pharmacoperones possess intrinsic agonist or antagonist activities since these were identified using high-throughput screens aimed at discovering direct agonists or antagonists. Here we describe an ultra-high-throughput compatible no-wash assay system designed to specifically identify pharmacoperones of the vasopressin type 2 receptor (V2R). Development of such assays is important and novel since useful chemical structures with the ability to control cellular trafficking but lacking intrinsic agonist or antagonist properties have not likely been identified using existing screens. In the described assay, the level of functional human V2R (hV2R) (mutant) present in each test well is quantitated by stimulation with saturating levels of agonist followed by use of a luminescent-based cyclic adenosine monophosphate assay. This allows the assay to identify compounds that increase the trafficking of mutant hV2R[L(83)Q] in our model system.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Transporte Proteico/efeitos dos fármacos , Deficiências na Proteostase/tratamento farmacológico , Receptores de Vasopressinas/efeitos dos fármacos , Descoberta de Drogas , Humanos , Dobramento de Proteína/efeitos dos fármacos , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo
6.
J Biol Chem ; 285(14): 10786-96, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20080970

RESUMO

The p53 pathway is disrupted in virtually every human tumor. In approximately 50% of human cancers, the p53 gene is mutated, and in the remaining cancers, the pathway is dysregulated by genetic lesions in other genes that modulate the p53 pathway. One common mechanism for inactivation of the p53 pathway in tumors that express wild-type p53 is increased expression of MDM2 or MDMX. MDM2 and MDMX bind p53 and inhibit its function by distinct nonredundant mechanisms. Small molecule inhibitors and small peptides have been developed that bind MDM2 in the p53-binding pocket and displace the p53 protein, leading to p53-mediated cell cycle exit and apoptosis. To date, peptide inhibitors of MDMX have been developed, but no small molecule inhibitors have been reported. We have developed biochemical and cell-based assays for high throughput screening of chemical libraries to identify MDMX inhibitors and identified the first MDMX inhibitor SJ-172550. This compound binds reversibly to MDMX and effectively kills retinoblastoma cells in which the expression of MDMX is amplified. The effect of SJ-172550 is additive when combined with an MDM2 inhibitor. Results from a series of biochemical and structural modeling studies suggest that SJ-172550 binds the p53-binding pocket of MDMX, thereby displacing p53. This lead compound is a useful chemical scaffold for further optimization of MDMX inhibitors that may eventually be used to treat pediatric cancers and various adult tumors that overexpress MDMX or have similar genetic lesions. When combined with selective MDM2 inhibitors, SJ-172550 may also be useful for treating tumors that express wild-type p53.


Assuntos
Acetatos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirazóis/farmacologia , Retinoblastoma/tratamento farmacológico , Retinoblastoma/patologia , Animais , Linhagem Celular Tumoral , Simulação por Computador , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Retinoblastoma/metabolismo , Bibliotecas de Moléculas Pequenas , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA