Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Blood Adv ; 8(4): 899-908, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38191666

RESUMO

ABSTRACT: Fanconi anemia (FA) is a hereditary, DNA repair deficiency disorder caused by pathogenic variants in any 1 of 22 known genes (FANCA-FANCW). Variants in FANCA account for nearly two-thirds of all patients with FA. Clinical presentation of FA can be heterogeneous and include congenital abnormalities, progressive bone marrow failure, and predisposition to cancer. Here, we describe a relatively mild disease manifestation among 6 individuals diagnosed with FA, each compound heterozygous for 1 established pathogenic FANCA variant and 1 FANCA exon 36 variant, c.3624C>T. These individuals had delayed onset of hematological abnormalities, increased survival, reduced incidence of cancer, and improved fertility. Although predicted to encode a synonymous change (p.Ser1208=), the c.3624C>T variant causes a splicing error resulting in a FANCA transcript missing the last 4 base pairs of exon 36. Deep sequencing and quantitative reverse transcription polymerase chain reaction analysis revealed that 6% to 10% of the FANCA transcripts included the canonical splice product, which generated wild-type FANCA protein. Consistently, functional analysis of cell lines from the studied individuals revealed presence of residual FANCD2 ubiquitination and FANCD2 foci formation, better cell survival, and decreased late S/G2 accumulation in response to DNA interstrand cross-linking agent, indicating presence of residual activity of the FA repair pathway. Thus, the c.3624C>T variant is a hypomorphic allele, which contributes to delayed manifestation of FA disease phenotypes in individuals with at least 1 c.3624C>T allele.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Linhagem Celular , Genótipo
2.
Int J Cancer ; 153(1): 183-196, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912284

RESUMO

Fanconi anemia (FA) is a heritable malformation, bone marrow failure and cancer predisposition syndrome that confers an exceptionally high risk of squamous carcinomas. These carcinomas originate in epithelia lining the mouth, proximal esophagus, vulva and anus: their origins are not understood, and no effective ways have been identified to prevent or delay their appearance. Many FA-associated carcinomas are also therapeutically challenging: they may be multi-focal and stage-advanced at diagnosis, and most individuals with FA cannot tolerate standard-of-care systemic therapies such as DNA cross-linking drugs or ionizing radiation due to constitutional DNA damage hypersensitivity. We developed the Fanconi Anemia Cancer Cell Line Resource (FA-CCLR) to foster new work on the origins, treatment and prevention of FA-associated carcinomas. The FA-CCLR consists of Fanconi-isogenic head and neck squamous cell carcinoma (HNSCC) cell line pairs generated from five individuals with FA-associated HNSCC, and five individuals with sporadic HNSCC. Sporadic, isogenic HNSCC cell line pairs were generated in parallel with FA patient-derived isogenic cell line pairs to provide comparable experimental material to use to identify cell and molecular phenotypes driven by germline or somatic loss of Fanconi pathway function, and the subset of these FA-dependent phenotypes that can be modified, complemented or suppressed. All 10 FANC-isogenic cell line pairs are available to academic, non-profit and industry investigators via the "Fanconi Anemia Research Materials" Resource and Repository at Oregon Health & Sciences University, Portland OR.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeça e Pescoço , Feminino , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Anemia de Fanconi/genética , Anemia de Fanconi/complicações , Anemia de Fanconi/patologia , Ciência Translacional Biomédica , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral
3.
Nature ; 612(7940): 495-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450981

RESUMO

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Assuntos
Reparo do DNA , Anemia de Fanconi , Genômica , Neoplasias de Cabeça e Pescoço , Humanos , Aldeídos/efeitos adversos , Aldeídos/metabolismo , Reparo do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Dano ao DNA/efeitos dos fármacos
4.
Clin Cancer Res ; 27(19): 5168-5187, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34045293

RESUMO

Fanconi anemia, the most frequent genetic cause of bone marrow failure, is characterized by an extreme predilection toward multiple malignancies, including a greater than 500-fold incidence of head and neck squamous cell carcinoma (HNSCC) relative to the general population. Fanconi anemia-associated HNSCC and esophageal SCC (FA-HNSCC) often present at advanced stages with poor survival. Surgical resection remains the primary treatment for FA-HNSCC, and there is often great reluctance to administer systemic agents and/or radiotherapy to these patients given their susceptibility to DNA damage. The paucity of FA-HNSCC case reports limits evidence-based management, and such cases have not been analyzed collectively in detail. We present a systematic review of FA-HNSCC treatments reported from 1966 to 2020, defining a cohort of 119 patients with FA-HNSCC including 16 esophageal SCCs (131 total primary tumors), who were treated with surgery, radiotherapy, systemic therapy (including cytotoxic agents, EGFR inhibitors, or immune checkpoint inhibitors), or a combination of modalities. We summarize the clinical responses and regimen-associated toxicities by treatment modality. The collective evidence suggests that when possible, surgical resection with curative intent should remain the primary treatment modality for FA-HNSCC. Radiation can be administered with acceptable toxicity in the majority of cases, including patients who have undergone stem cell transplantation. Although there is little justification for cytotoxic chemotherapy, EGFR inhibitors and tyrosine kinase inhibitors may be both safe and effective. Immunotherapy may also be considered. Most oncologists have little personal experience with FA-HNSCC. This review is intended as a comprehensive resource for clinicians.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Anemia de Fanconi/complicações , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
5.
Cancer Discov ; 11(9): 2300-2315, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33893150

RESUMO

Hundreds of genes become aberrantly silenced in acute myeloid leukemia (AML), with most of these epigenetic changes being of unknown functional consequence. Here, we demonstrate how gene silencing can lead to an acquired dependency on the DNA repair machinery in AML. We make this observation by profiling the essentiality of the ubiquitination machinery in cancer cell lines using domain-focused CRISPR screening, which revealed Fanconi anemia (FA) proteins UBE2T and FANCL as unique dependencies in AML. We demonstrate that these dependencies are due to a synthetic lethal interaction between FA proteins and aldehyde dehydrogenase 2 (ALDH2), which function in parallel pathways to counteract the genotoxicity of endogenous aldehydes. We show DNA hypermethylation and silencing of ALDH2 occur in a recurrent manner in human AML, which is sufficient to confer FA pathway dependency. Our study suggests that targeting of the ubiquitination reaction catalyzed by FA proteins can eliminate ALDH2-deficient AML. SIGNIFICANCE: Aberrant gene silencing is an epigenetic hallmark of human cancer, but the functional consequences of this process are largely unknown. In this study, we show how an epigenetic alteration leads to an actionable dependency on a DNA repair pathway through the disabling of genetic redundancy.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Leucemia Mieloide Aguda/genética , Linhagem Celular Tumoral , Humanos , Ubiquitinação
6.
Blood ; 137(15): 1988-1990, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856442
7.
Br J Haematol ; 193(5): 971-975, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32866285

RESUMO

Fanconi anaemia (FA) is a genetic disorder due to mutations in any of the 22 FANC genes (FANCA-FANCW) and has high phenotypic variation. Siblings may have similar clinical outcome because they share the same variants; however, such association has not been reported. We present the detailed phenotype and clinical course of 25 sibling sets with FA from two institutions. Haematological progression significantly correlated between siblings, which was confirmed in an additional 55 sibling pairs from the International Fanconi Anemia Registry. Constitutional abnormalities were not concordant, except for a moderate degree of concordance in kidney abnormalities and microcephaly.


Assuntos
Anemia de Fanconi , Rim , Microcefalia , Sistema de Registros , Irmãos , Anemia de Fanconi/sangue , Anemia de Fanconi/genética , Anemia de Fanconi/imunologia , Feminino , Humanos , Rim/anormalidades , Rim/imunologia , Rim/metabolismo , Masculino , Microcefalia/genética , Microcefalia/imunologia , Microcefalia/metabolismo , Estudos Retrospectivos
8.
Artigo em Inglês | MEDLINE | ID: mdl-33172906

RESUMO

Fanconi anemia (FA) is a clinically heterogenous and genetically diverse disease with 22 known complementation groups (FA-A to FA-W), resulting from the inability to repair DNA interstrand cross-links. This rare disorder is characterized by congenital defects, bone marrow failure, and cancer predisposition. FANCA is the most commonly mutated gene in FA and a variety of mostly private mutations have been documented, including small and large indels and point and splicing variants. Genotype-phenotype associations in FA are complex, and a relationship between particular FANCA variants and the observed cellular phenotype or illness severity remains unclear. In this study, we describe two siblings with compound heterozygous FANCA variants (c.3788_3790delTCT and c.4199G > A) who both presented with esophageal squamous cell carcinoma at the age of 51. The proband came to medical attention when he developed pancytopenia after a single cycle of low-dose chemotherapy including platinum-based therapy. Other than a minor thumb abnormality, neither patient had prior findings to suggest FA, including normal blood counts and intact fertility. Patient fibroblasts from both siblings display increased chromosomal breakage and hypersensitivity to interstrand cross-linking agents as seen in typical FA. Based on our functional data demonstrating that the c.4199G > A/p.R1400H variant represents a hypomorphic FANCA allele, we conclude that the residual activity of the Fanconi anemia repair pathway accounts for lack of spontaneous bone marrow failure or infertility with the late presentation of malignancy as the initial disease manifestation. This and similar cases of adult-onset esophageal cancer stress the need for chromosome breakage testing in patients with early onset of aerodigestive tract squamous cell carcinomas before platinum-based therapy is initiated.


Assuntos
Neoplasias Esofágicas/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Sistemas CRISPR-Cas , Quebra Cromossômica , DNA , Reparo do DNA , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/terapia , Fibroblastos/metabolismo , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
9.
Cell Cycle ; 19(19): 2553-2561, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32865112

RESUMO

Severe cellular sensitivity and aberrant chromosomal rearrangements in response to DNA interstrand crosslink (ICL) inducing agents are hallmarks of Fanconi anemia (FA) deficient cells. These phenotypes have previously been ascribed to inappropriate activity of non-homologous end joining (NHEJ) rather than a direct consequence of DNA ICL repair defects. Here we used chemical inhibitors, RNAi, and Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 to inactivate various components of NHEJ in cells from FA patients. We show that suppression of DNA-PKcs, DNA Ligase IV, and 53BP1 is not capable of rescuing ICL-induced proliferation defects and only 53BP1 knockout partially suppresses the chromosomal abnormalities of FA patient cells.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Transformada , Proliferação de Células , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Células HCT116 , Humanos , Mutação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
10.
Genes Dev ; 34(11-12): 832-846, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354836

RESUMO

DNA interstrand cross-links (ICLs) are a form of DNA damage that requires the interplay of a number of repair proteins including those of the Fanconi anemia (FA) and the homologous recombination (HR) pathways. Pathogenic variants in the essential gene BRCA2/FANCD1, when monoallelic, predispose to breast and ovarian cancer, and when biallelic, result in a severe subtype of Fanconi anemia. BRCA2 function in the FA pathway is attributed to its role as a mediator of the RAD51 recombinase in HR repair of programmed DNA double-strand breaks (DSB). BRCA2 and RAD51 functions are also required to protect stalled replication forks from nucleolytic degradation during response to hydroxyurea (HU). While RAD51 has been shown to be necessary in the early steps of ICL repair to prevent aberrant nuclease resection, the role of BRCA2 in this process has not been described. Here, based on the analysis of BRCA2 DNA-binding domain (DBD) mutants (c.8488-1G>A and c.8524C>T) discovered in FA patients presenting with atypical FA-like phenotypes, we establish that BRCA2 is necessary for the protection of DNA at ICLs. Cells carrying BRCA2 DBD mutations are sensitive to ICL-inducing agents but resistant to HU treatment consistent with relatively high HR repair in these cells. BRCA2 function at an ICL protects against DNA2-WRN nuclease-helicase complex and not the MRE11 nuclease that is implicated in the resection of HU-induced stalled replication forks. Our results also indicate that unlike the processing at HU-induced stalled forks, the function of the SNF2 translocases (SMARCAL1, ZRANB3, or HLTF), implicated in fork reversal, are not an integral component of the ICL repair, pointing to a different mechanism of fork protection at different DNA lesions.


Assuntos
Proteína BRCA2/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/fisiopatologia , Proteína BRCA2/genética , Linhagem Celular , DNA/química , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Recombinação Homóloga/genética , Humanos , Hidroxiureia/farmacologia , Mutação , Domínios Proteicos/genética , Rad51 Recombinase/metabolismo
11.
Blood ; 135(18): 1588-1602, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32106311

RESUMO

Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Alelos , Processamento Alternativo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Loci Gênicos , Humanos , Modelos Biológicos , Mutação , Fenótipo , Estabilidade de RNA , Índice de Gravidade de Doença , Ubiquitinação
12.
Nat Struct Mol Biol ; 27(2): 168-178, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042151

RESUMO

LINE-1 retrotransposon overexpression is a hallmark of human cancers. We identified a colorectal cancer wherein a fast-growing tumor subclone downregulated LINE-1, prompting us to examine how LINE-1 expression affects cell growth. We find that nontransformed cells undergo a TP53-dependent growth arrest and activate interferon signaling in response to LINE-1. TP53 inhibition allows LINE-1+ cells to grow, and genome-wide-knockout screens show that these cells require replication-coupled DNA-repair pathways, replication-stress signaling and replication-fork restart factors. Our findings demonstrate that LINE-1 expression creates specific molecular vulnerabilities and reveal a retrotransposition-replication conflict that may be an important determinant of cancer growth.


Assuntos
DNA/genética , Elementos Nucleotídeos Longos e Dispersos , Neoplasias/genética , Linhagem Celular Tumoral , Proliferação de Células , Replicação do DNA , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Hum Mutat ; 41(1): 122-128, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513304

RESUMO

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, predisposition to cancer, and congenital abnormalities. FA is caused by pathogenic variants in any of 22 genes involved in the DNA repair pathway responsible for removing interstrand crosslinks. FANCL, an E3 ubiquitin ligase, is an integral component of the pathway, but patients affected by disease-causing FANCL variants are rare, with only nine cases reported worldwide. We report here a FANCL founder variant, anticipated to be synonymous, c.1092G>A;p.K364=, but demonstrated to induce aberrant splicing, c.1021_1092del;p.W341_K364del, that accounts for the onset of FA in 13 cases from South Asia, 12 from India and one from Pakistan. We comprehensively illustrate the pathogenic nature of the variant, provide evidence for a founder effect, and propose including this variant in genetic screening of suspected FA patients in India and Pakistan, as well as those with ancestry from these regions of South Asia.


Assuntos
Proteína do Grupo de Complementação L da Anemia de Fanconi/genética , Anemia de Fanconi/epidemiologia , Anemia de Fanconi/genética , Efeito Fundador , Variação Genética , Alelos , Ásia/epidemiologia , Aberrações Cromossômicas , Consanguinidade , Feminino , Genótipo , Humanos , Índia/epidemiologia , Masculino , Mutação , Prevalência
14.
Nat Rev Dis Primers ; 5(1): 64, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537806

RESUMO

Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.


Assuntos
Distúrbios no Reparo do DNA/diagnóstico , Distúrbios no Reparo do DNA/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/fisiopatologia , Síndrome de Bloom/diagnóstico , Síndrome de Bloom/genética , Síndrome de Bloom/fisiopatologia , Dano ao DNA/genética , Distúrbios no Reparo do DNA/fisiopatologia , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/fisiopatologia , Humanos , Síndrome de Quebra de Nijmegen/diagnóstico , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/fisiopatologia
15.
J Cell Biol ; 218(4): 1096-1107, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670471

RESUMO

The replisome, the molecular machine dedicated to copying DNA, encounters a variety of obstacles during S phase. Without a proper response to this replication stress, the genome becomes unstable, leading to disease, including cancer. The immediate response is localized to the stalled replisome and includes protection of the nascent DNA. A number of recent studies have provided insight into the factors recruited to and responsible for protecting stalled replication forks. In response to replication stress, the SNF2 family of DNA translocases has emerged as being responsible for remodeling replication forks in vivo. The protection of stalled replication forks requires the cooperation of RAD51, BRCA1, BRCA2, and many other DNA damage response proteins. In the absence of these fork protection factors, fork remodeling renders them vulnerable to degradation by nucleases and helicases, ultimately compromising genome integrity. In this review, we focus on the recent progress in understanding the protection, processing, and remodeling of stalled replication forks in mammalian cells.


Assuntos
Núcleo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA/biossíntese , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , DNA/química , DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Instabilidade Genômica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Conformação de Ácido Nucleico
16.
Mol Cell ; 69(1): 24-35.e5, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290612

RESUMO

The protection and efficient restart of stalled replication forks is critical for the maintenance of genome integrity. Here, we identify a regulatory pathway that promotes stalled forks recovery from replication stress. We show that the mammalian replisome component C20orf43/RTF2 (homologous to S. pombe Rtf2) must be removed for fork restart to be optimal. We further show that the proteasomal shuttle proteins DDI1 and DDI2 are required for RTF2 removal from stalled forks. Persistence of RTF2 at stalled forks results in fork restart defects, hyperactivation of the DNA damage signal, accumulation of single-stranded DNA (ssDNA), sensitivity to replication drugs, and chromosome instability. These results establish that RTF2 removal is a key determinant for the ability of cells to manage replication stress and maintain genome integrity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA/genética , Instabilidade Genômica/genética , Ácido Aspártico Proteases/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , DNA/biossíntese , Reparo do DNA/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Origem de Replicação/genética , Estresse Fisiológico/genética
17.
Mol Genet Genomic Med ; 6(1): 77-91, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29193904

RESUMO

BACKGROUND: Fanconi anemia (FA) is a rare disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer. Patients harboring X-linked FANCB pathogenic variants usually present with severe congenital malformations resembling VACTERL syndrome with hydrocephalus. METHODS: We employed the diepoxybutane (DEB) test for FA diagnosis, arrayCGH for detection of duplication, targeted capture and next-gen sequencing for defining the duplication breakpoint, PacBio sequencing of full-length FANCB aberrant transcript, FANCD2 ubiquitination and foci formation assays for the evaluation of FANCB protein function by viral transduction of FANCB-null cells with lentiviral FANCB WT and mutant expression constructs, and droplet digital PCR for quantitation of the duplication in the genomic DNA and cDNA. RESULTS: We describe here an FA-B patient with a mild phenotype. The DEB diagnostic test for FA revealed somatic mosaicism. We identified a 9154 bp intragenic duplication in FANCB, covering the first coding exon 3 and the flanking regions. A four bp homology (GTAG) present at both ends of the breakpoint is consistent with microhomology-mediated duplication mechanism. The duplicated allele gives rise to an aberrant transcript containing exon 3 duplication, predicted to introduce a stop codon in FANCB protein (p.A319*). Duplication levels in the peripheral blood DNA declined from 93% to 7.9% in the span of eleven years. Moreover, the patient fibroblasts have shown 8% of wild-type (WT) allele and his carrier mother showed higher than expected levels of WT allele (79% vs. 50%) in peripheral blood, suggesting that the duplication was highly unstable. CONCLUSION: Unlike sequence point variants, intragenic duplications are difficult to precisely define, accurately quantify, and may be very unstable, challenging the proper diagnosis. The reversion of genomic duplication to the WT allele results in somatic mosaicism and may explain the relatively milder phenotype displayed by the FA-B patient described here.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Adolescente , Alelos , Sequência de Bases/genética , Células Sanguíneas/metabolismo , Éxons/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Fibroblastos , Duplicação Gênica/genética , Genes Ligados ao Cromossomo X/genética , Genótipo , Humanos , Masculino , Mosaicismo , Fenótipo
18.
Genes Dev ; 31(19): 1933-1938, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089421

RESUMO

Senescence is a terminal differentiation program that halts the growth of damaged cells and must be circumvented for cancer to arise. Here we describe a panel of genetic screens to identify genes required for replicative senescence. We uncover a role in senescence for the potent tumor suppressor and ATM substrate USP28. USP28 controls activation of both the TP53 branch and the GATA4/NFkB branch that controls the senescence-associated secretory phenotype (SASP). These results suggest a role for ubiquitination in senescence and imply a common node downstream from ATM that links the TP53 and GATA4 branches of the senescence response.


Assuntos
Senescência Celular/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Fator de Transcrição GATA4/genética , Biblioteca Gênica , Células HCT116 , Humanos , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/genética , Ubiquitinação
19.
Genes Dev ; 30(6): 645-59, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980189

RESUMO

Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5'-3' exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit(+) cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency.


Assuntos
Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Rim/patologia , Hepatopatias/genética , Animais , Medula Óssea/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Epistasia Genética , Exodesoxirribonucleases/metabolismo , Fígado/patologia , Camundongos , Enzimas Multifuncionais , Estrutura Terciária de Proteína , Transporte Proteico
20.
Hum Mutat ; 37(5): 465-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26841305

RESUMO

Fanconi anemia (FA) is a rare inherited disorder caused by pathogenic variants in one of 19 FANC genes. FA patients display congenital abnormalities, and develop bone marrow failure, and cancer susceptibility. We identified homozygous mutations in four FA patients and, in each case, only one parent carried the obligate mutant allele. FANCA and FANCP/SLX4 genes, both located on chromosome 16, were the affected recessive FA genes in three and one family respectively. Genotyping with short tandem repeat markers and SNP arrays revealed uniparental disomy (UPD) of the entire mutation-carrying chromosome 16 in all four patients. One FANCA patient had paternal UPD, whereas FA in the other three patients resulted from maternal UPD. These are the first reported cases of UPD as a cause of FA. UPD indicates a reduced risk of having another child with FA in the family and has implications in prenatal diagnosis.


Assuntos
Cromossomos Humanos Par 16/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Recombinases/genética , Dissomia Uniparental/genética , Adulto , Pré-Escolar , Feminino , Genes Recessivos , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA