Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Shoulder Elbow Surg ; 33(1): 172-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37543280

RESUMO

BACKGROUND: The supraspinatus (SS) is formed by a larger anterior bipennate muscle with a cord-like tendon and a posterior unipennate muscle with a strap-like tendon. There is a tendinous connection between the 2 SS subunits. Yet, the relative mechanical contribution of the SS cord and SS strap musculotendinous units to load transmission and subsequent shoulder abduction force is unknown. We hypothesized that a simulated SS cord vs. an SS strap tear would generate less shoulder abduction force and, further, an intact SS cord would offset the expected abduction loss from an SS strap tear, but the inverse would not be true. MATERIALS AND METHODS: Twenty fresh-frozen cadaveric specimens were tested in a shoulder simulator with physiological load vectors applied to the upper and lower subscapularis, SS cord, SS strap, infraspinatus, and teres minor. The roles of the SS cord and SS strap muscles were delineated by varying their loads, while keeping constant loads on other muscles. The randomized testing trials included a native condition and 4 test cases that simulated tears by dropping the load and force transfer via the SS cord-to-SS strap connection by adding the load. Testing was completed at both 0° and 30° of abduction. During each test, shoulder abduction force, rotator cuff strains, and humeral translation were measured. RESULTS: Simulated isolated SS cord and SS strap tears led to a significantly lower shoulder abduction force (P < .001). A simulated cord tear at 0° and 30° reduced the abduction force by 53% and 38%, respectively. A simulated strap tear at 0° and 30° dropped the abduction force by 27% and 23%, respectively. The decline in the abduction force was larger for the SS cord tear vs. SS strap tear (P ≤ .001). An SS cord tear with full-load transfer to the strap was able to recover to native values at both 0° and 30° (P ≥ .288). Likewise, an SS strap tear with full-load transfer to the SS cord showed a similar recovery to native values at both 0° and 30° (P ≥ .155). During full-load transfer, the tendon strain followed the loading pattern. An SS cord tear or SS strap tear did not cause a change in humeral translation (P ≥ .303). DISCUSSION: The mechanical findings support the efficacy of nonoperative treatment of small (<10 mm) SS tears,11 because an intact SS strap tendon can effectively offset the abduction loss of a torn SS cord tear and vice versa.


Assuntos
Lacerações , Lesões do Manguito Rotador , Articulação do Ombro , Humanos , Manguito Rotador/cirurgia , Ombro/cirurgia , Articulação do Ombro/cirurgia , Fenômenos Biomecânicos , Tendões , Ruptura , Amplitude de Movimento Articular/fisiologia , Cadáver
2.
J Bone Joint Surg Am ; 104(14): 1292-1300, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35856930

RESUMO

BACKGROUND: It is accepted by the orthopaedic community that the rotator cable (RCa) acts as a suspension bridge that stress shields the crescent area (CA). The goal of this study was to determine if the RCa does stress shield the CA during shoulder abduction. METHODS: The principal strain magnitude and direction in the RCa and CA and shoulder abduction force were measured in 20 cadaveric specimens. Ten specimens underwent a release of the anterior cable insertion followed by a posterior release. In the other 10, a release of the posterior cable insertion was followed by an anterior release. Testing was performed for the native, single-release, and full-release conditions. The thicknesses of the RCa and CA were measured. RESULTS: Neither the principal strain magnitude nor the strain direction in either the RCa or the CA changed with single or full RCa release (p ≥ 0.493). There were no changes in abduction force after single or full RCa release (p ≥ 0.180). The RCa and CA thicknesses did not differ from one another at any location (p ≥ 0.195). CONCLUSIONS: The RCa does not act as a suspension bridge and does not stress shield the CA. The CA primarily transfers shoulder abduction force to the greater tuberosity. CLINICAL RELEVANCE: The CA is important in force transmission during shoulder abduction, and efforts should be made to restore its continuity with a repair or reconstruction.


Assuntos
Movimento , Manguito Rotador , Ombro , Fenômenos Biomecânicos , Cadáver , Humanos , Movimento/fisiologia , Manguito Rotador/fisiologia , Ombro/fisiologia
3.
J Shoulder Elbow Surg ; 30(7S): S57-S65, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878486

RESUMO

BACKGROUND: The rotator cable (RCa) is an important articular-sided structure of the cuff capsular complex that helps prevent suture pull out during rotator cuff repairs (RCRs) and plays a role in force transmission. Yet, the RCa cannot be located during bursal-sided RCRs. The purpose of this study is to develop a method to locate the RCa in the subacromial space and compare its bursal- and articular-sided dimensions. METHODS: In 20 fresh-frozen cadaveric specimens, the RCa was found from the articular side, outlined with stitches, and then evaluated from the bursal side using an easily identifiable reference point, the intersection of a line bisecting the supraspinatus (SS) tendon and posterior SS myotendinous junction (MTJ). Four bursal-sided lengths were measured on the SS-bisecting line as well as the RCa's outside anteroposterior base. For the articular-sided measurements, the rotator cuff capsular complex was detached from bone and optically scanned creating 3D solid models. Using the 3D models, 4 articular-sided lengths were made, including the RCa's inside and outside anteroposterior base. RESULTS: The RCa's medial arch was located 9.9 ± 5.6 mm from the reference point in 10 intact specimens and 4.1 ± 2.4 mm in 10 torn specimens (P = .007). The RCa's width was 10.9 ± 2.1 mm, and the distance from the lateral edge of the RCa to the lateral SS insertion was 13.9 ± 4.8 mm. The bursal- and articular-sided outside anteroposterior base measured 48.1 ± 6.4 mm and 49.6 ± 6.5 mm, respectively (P = .268). The average inside anteroposterior base measurement was 37.3 ± 5.9 mm. DISCUSSION: The medial arch of the RCa can be reliably located during subacromial arthroscopy using the reference point, analogous to the posterior SS MTJ. The RCa is located 10 mm in intact and 4 mm in torn tendons (P = .007) from the posterior SS MTJ. If the above 6-mm shift in location of the RCa is not taken into consideration during rotator cuff suture placement, it could negatively affect time zero repair strength. The inside anteroposterior base of the RCa measures on average 37 mm; therefore, rotator cuff tears measuring >37 mm are at risk of rupturing part or all of the RCa's 2 humeral attachments, which if not recognized and addressed could impact postoperative function.


Assuntos
Artroscopia , Lesões do Manguito Rotador , Bolsa Sinovial/cirurgia , Humanos , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Tendões
4.
J Bone Joint Surg Am ; 103(9): 812-819, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497074

RESUMO

BACKGROUND: Partial avulsions of the short and/or long head of the distal biceps tendon cause pain and loss of strength. The goal of the present study was to quantify the loss of supination and flexion strength following a series of surgical releases designed to simulate partial and complete short and long head traumatic avulsions. METHODS: Mechanical testing was performed to measure supination moment arms and flexion force efficiency on 18 adult fresh-frozen specimens in pronation, neutral, and supination. The distal biceps footprint length was divided into 4 equal segments. In 9 specimens (the distal-first group), the tendon was partially cut starting distally by releasing 25%, 50%, and 75% of the insertion site. In the other 9 specimens (the proximal-first group), the releases started proximally. Mechanical testing was performed before and after each release. RESULTS: Significant decreases in the supination moment arm occurred after a 75% release in the distal-first release group; the decrease was 24% in pronation (p = 0.003) and 10% in neutral (p = 0.043). No significant differences in the supination moment arm (p ≥ 0.079) or in flexion force efficiency (p ≥ 0.058) occurred in the proximal-first group. CONCLUSIONS: A simulated complete short head avulsion significantly decreased the supination moment arm and therefore supination strength. CLINICAL RELEVANCE: A mechanical case can be made for repair of partial distal biceps tendon avulsions when the rupture involves ≥75% of the distal insertion site.


Assuntos
Força Muscular/fisiologia , Músculo Esquelético/lesões , Ruptura/complicações , Supinação/fisiologia , Traumatismos dos Tendões/complicações , Adulto , Braço , Fenômenos Biomecânicos , Cadáver , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Pronação/fisiologia , Distribuição Aleatória , Amplitude de Movimento Articular/fisiologia , Ruptura/fisiopatologia , Traumatismos dos Tendões/fisiopatologia
6.
J Shoulder Elbow Surg ; 28(4): 757-764, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30595503

RESUMO

BACKGROUND: Clinical and functional impairment after nonoperative treatment of distal biceps ruptures is not well understood. The goal of this study was to measure patients' perceived disability, kinematic adjustment, and forearm supination power after nonoperative treatment of distal biceps ruptures. METHODS: Fourteen individuals after nonoperative treatment of distal biceps ruptures were matched to a control group of 18 uninjured volunteers. Both groups prospectively completed the Disabilities of the Arm, Shoulder and Hand (DASH), Single Assessment Numerical Evaluation (SANE), and Biceps Disability Questionnaire. Both performed a new timed isotonic supination test that was designed to simulate activities of daily life. The isotonic torque dynamometer measures the supination arc, center of supination arc, torque, angular velocity, and power. Motion analysis quantifies forearm and shoulder contributions to the arc of supination. RESULTS: The nonoperative treated group's DASH (23.2 ± 10.3) and SANE (59.6 ± 16.2) scores demonstrated a clinical meaningful impairment. The control group showed no significant differences in kinematic values between dominant and nondominant arms (P = .854). The nonoperative biceps ruptured arms, compared with their uninjured arms, changed supination motion by decreasing the supination arc (P ≤ .036), shifting the center of supination arc to a more pronated position (P ≤ .030), and increasing the shoulder contribution to rotation (P ≤ .001); despite this adaptation, their average corrected power of supination decreased by 47% (P = .001). CONCLUSION: Patients should understand that nonoperative treatment for distal biceps ruptures will result in varying degrees of functional loss as measured by the DASH, SANE, and Biceps Disability Questionnaire, change their supination kinematics during repetitive tasks, and that they will lose 47% of their supination power.


Assuntos
Músculo Esquelético/lesões , Ruptura/fisiopatologia , Ruptura/terapia , Adaptação Fisiológica , Adulto , Idoso , Braço , Fenômenos Biomecânicos , Avaliação da Deficiência , Antebraço/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Rotação , Ombro/fisiologia , Supinação , Torque , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA