Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(3): e1009410, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720986

RESUMO

The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/microbiologia , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose/microbiologia , Tropismo Viral/fisiologia , Animais , Bovinos , Células Gigantes , Humanos
2.
Cell Rep ; 30(1): 124-136.e4, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914380

RESUMO

Increased glycolytic metabolism recently emerged as an essential process driving host defense against Mycobacterium tuberculosis (Mtb), but little is known about how this process is regulated during infection. Here, we observe repression of host glycolysis in Mtb-infected macrophages, which is dependent on sustained upregulation of anti-inflammatory microRNA-21 (miR-21) by proliferating mycobacteria. The dampening of glycolysis by miR-21 is mediated through targeting of phosphofructokinase muscle (PFK-M) isoform at the committed step of glycolysis, which facilitates bacterial growth by limiting pro-inflammatory mediators, chiefly interleukin-1ß (IL-1ß). Unlike other glycolytic genes, PFK-M expression and activity is repressed during Mtb infection through miR-21-mediated regulation, while other less-active isoenzymes dominate. Notably, interferon-γ (IFN-γ), which drives Mtb host defense, inhibits miR-21 expression, forcing an isoenzyme switch in the PFK complex, augmenting PFK-M expression and macrophage glycolysis. These findings place the targeting of PFK-M by miR-21 as a key node controlling macrophage immunometabolic function.


Assuntos
Glicólise , Interações Hospedeiro-Patógeno , Interleucina-1beta/metabolismo , MicroRNAs/metabolismo , Mycobacterium tuberculosis/fisiologia , Fosfofrutoquinase-1/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Sequência de Bases , Proliferação de Células , Células HEK293 , Humanos , Interferon gama/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , MicroRNAs/genética , Fosfofrutoquinase-1/genética , Células RAW 264.7 , Tuberculose/microbiologia
3.
Immunity ; 44(2): 368-79, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26885859

RESUMO

Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-γ) receptor signaling. Mal-dependent IFN-γ receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-γ signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-γ-related diseases including autoimmunity and cancer.


Assuntos
Interferon gama/metabolismo , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Mycobacterium tuberculosis/imunologia , Receptores de Interleucina-1/metabolismo , Tuberculose Pulmonar/imunologia , Animais , Autofagia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Células HEK293 , Humanos , Imunidade Inata/genética , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/microbiologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Polimorfismo Genético , Ligação Proteica/genética , RNA Interferente Pequeno/genética , Receptores de Interferon/metabolismo , Receptores de Interleucina-1/genética , Tuberculose Pulmonar/genética , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA