Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Anal Bioanal Chem ; 416(7): 1745-1757, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324070

RESUMO

Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.


Assuntos
Multiômica , Neoplasias da Próstata , Masculino , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Microdissecção e Captura a Laser , Fosfatidilcolinas/metabolismo
2.
J Neurochem ; 166(3): 481-496, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357981

RESUMO

Sanfilippo syndrome (MPS III) is an autosomal recessive inherited disorder causing dementia in children, following an essentially normal early developmental period. First symptoms typically include delayed language development, hyperactivity and/or insomnia from 2 years of age, followed by unremitting and overt loss of previously acquired skills. There are no approved treatments, and the median age of death is 18 years. Treatments under clinical trial demonstrate therapeutic benefit when applied pre-symptomatically in children diagnosed early through known familial inheritance risk. Newborn screening for Sanfilippo syndrome would enable pre-symptomatic diagnosis and optimal therapeutic benefit, however, many fold more patients with Sanfilippo syndrome are expected to be identified in the population than present with childhood dementia. Therefore, the capacity to stratify which Sanfilippo infants will need treatment in toddlerhood is necessary. While diagnostic methods have been developed, and continue to be refined, currently there are no tools or laboratory-based biomarkers available to provide pre-symptomatic prognosis. There is also a lack of progression and neurocognitive response-to-treatment biomarkers; disease stage and rate of progression are currently determined by age at symptom onset, loss of cerebral grey matter volume by magnetic resonance imaging and developmental quotient score for age. Robust blood-based biomarkers are an urgent unmet need. In this review, we discuss the development of biomarker assays for Sanfilippo based on the neuropathological pathways known to change leading into symptom onset and progression, and their performance as biomarkers in other neurodegenerative diseases. We propose that neural-derived exosomes extracted from blood may provide an ideal liquid biopsy to detect reductions in synaptic protein availability, and mitochondrial function. Furthermore, given the prominent role of neuroinflammation in symptom expression, glial fibrillary acidic protein detection in plasma/serum, alongside measurement of active brain atrophy by neurofilament light chain, warrant increased investigation for prognostic, progression and neurocognitive response-to-treatment biomarker potential in Sanfilippo syndrome and potentially other childhood dementias.


Assuntos
Demência , Mucopolissacaridose III , Criança , Lactente , Recém-Nascido , Humanos , Adolescente , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/patologia , Biomarcadores , Prognóstico
3.
FASEB J ; 37(4): e22846, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856983

RESUMO

Colchicine is a broad-acting anti-inflammatory agent that has attracted interest for repurposing in atherosclerotic cardiovascular disease. Here, we studied its ability at a human equivalent dose of 0.5 mg/day to modify plaque formation and composition in murine atherosclerosis and investigated its actions on macrophage responses to atherogenic stimuli in vitro. In atherosclerosis induced by high-cholesterol diet, Apoe-/- mice treated with colchicine had 50% reduction in aortic oil Red O+ plaque area compared to saline control (p = .001) and lower oil Red O+ staining of aortic sinus lesions (p = .03). In vitro, addition of 10 nM colchicine inhibited foam cell formation from murine and human macrophages after treatment with oxidized LDL (ox-LDL). Mechanistically, colchicine downregulated glycosylation and surface expression of the ox-LDL uptake receptor, CD36, and reduced CD36+ staining in aortic sinus plaques. It also decreased macrophage uptake of cholesterol crystals, resulting in lower intracellular lysosomal activity, inhibition of the NLRP3 inflammasome, and reduced secretion of IL-1ß and IL-18. Colchicine's anti-atherosclerotic actions were accentuated in a mouse model of unstable plaque induced by carotid artery tandem stenosis surgery, where it decreased lesion size by 48% (p = .01), reduced lipid (p = .006) and necrotic core area (p = .007), increased collagen content and cap-to-necrotic core ratio (p = .05), and attenuated plaque neutrophil extracellular traps (p < .001). At low dose, colchicine's effects were not accompanied by the evidence of microtubule depolymerization. Together, these results show that colchicine exerts anti-atherosclerotic and plaque-stabilizing effects at low dose by inhibiting foam cell formation and cholesterol crystal-induced inflammation. This provides a new framework to support its repurposing for atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Estenose das Carótidas , Humanos , Animais , Camundongos , Células Espumosas , Colchicina , Colesterol
4.
Cancers (Basel) ; 14(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35406474

RESUMO

Due to advances in the detection and management of prostate cancer over the past 20 years, most cases of localised disease are now potentially curable by surgery or radiotherapy, or amenable to active surveillance without treatment. However, this has given rise to a new dilemma for disease management; the inability to distinguish indolent from lethal, aggressive forms of prostate cancer, leading to substantial overtreatment of some patients and delayed intervention for others. Driving this uncertainty is the critical deficit of novel targets for systemic therapy and of validated biomarkers that can inform treatment decision-making and to select and monitor therapy. In part, this lack of progress reflects the inherent challenge of undertaking target and biomarker discovery in clinical prostate tumours, which are cellularly heterogeneous and multifocal, necessitating the use of spatial analytical approaches. In this review, the principles of mass spectrometry-based lipid imaging and complementary gene-based spatial omics technologies, their application to prostate cancer and recent advancements in these technologies are considered. We put in perspective studies that describe spatially-resolved lipid maps and metabolic genes that are associated with prostate tumours compared to benign tissue and increased risk of disease progression, with the aim of evaluating the future implementation of spatial lipidomics and complementary transcriptomics for prognostication, target identification and treatment decision-making for prostate cancer.

5.
Anal Chem ; 94(8): 3476-3484, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157429

RESUMO

Chromatography is often used as a method for reducing sample complexity prior to analysis by mass spectrometry, and the use of retention time (RT) is becoming increasingly popular to add valuable supporting information in lipid identification. The RT of lipids with the same headgroup in reversed-phase separation can be predicted using the equivalent carbon number (ECN) model. This model describes the effects of acyl chain length and degree of saturation on lipid RT. For the first time, we have found a robust correlation in the chromatographic separation of lipids with different headgroups that share the same fatty acid motive. This relationship can be exploited to perform interclass RT conversion (IC-RTC) by building a model from RT measurements from lipid standards that allows the prediction of RT of one lipid subclass based on another. Here, we utilize ECN modeling and IC-RTC to build a glycerophospholipid RT library with 517 entries based on 136 tandem mass spectrometry-characterized lipid RTs from NIST SRM-1950 plasma and lipid standards. The library was tested on a patient cohort undergoing coronary artery bypass grafting surgery (n = 37). A total of 156 unique circulating glycerophospholipids were identified, of which 52 (1 LPG, 24 PE, 5 PG, 18 PI, and 9 PS) were detected with IC-RTC, thereby demonstrating the utility of this technique for the identification of lipid species not found in commercial standards.


Assuntos
Carbono , Lipidômica , Glicerofosfolipídeos , Humanos , Plasma , Espectrometria de Massas em Tandem/métodos
6.
Cancer Res ; 81(19): 4981-4993, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34362796

RESUMO

Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Here we used quantitative mass spectrometry to define the "lipidome" in prostate tumors with matched benign tissues (n = 21), independent unmatched tissues (n = 47), and primary prostate explants cultured with the clinical AR antagonist enzalutamide (n = 43). Significant differences in lipid composition were detected and spatially visualized in tumors compared with matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and phospholipid composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting tumor-related lipid features via inhibition of acetyl-CoA carboxylase 1 significantly reduced cellular proliferation and induced apoptosis in tissue explants. This characterization of the prostate cancer lipidome in clinical tissues reveals enhanced fatty acid synthesis, elongation, and desaturation as tumor-defining features, with potential for therapeutic targeting. SIGNIFICANCE: This study identifies malignancy and treatment-associated changes in lipid composition of clinical prostate cancer tissues, suggesting that mediators of these lipidomic changes could be targeted using existing metabolic agents.


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Lipídeos de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Biomarcadores , Biologia Computacional/métodos , Metabolismo Energético , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica/métodos , Masculino , Metabolômica/métodos , Terapia de Alvo Molecular , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/etiologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
7.
Anal Bioanal Chem ; 413(10): 2695-2708, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33564925

RESUMO

Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) is a common molecular imaging modality used to characterise the abundance and spatial distribution of lipids in situ. There are several technical challenges predominantly involving sample pre-treatment and preparation which have complicated the analysis of clinical tissues by MALDI-MSI. Firstly, the common embedding of samples in optimal cutting temperature (O.C.T.), which contains high concentrations of polyethylene glycol (PEG) polymers, causes analyte signal suppression during mass spectrometry (MS) by competing for available ions during ionisation. This suppressive effect has constrained the application of MALDI-MSI for the molecular mapping of clinical tissues. Secondly, the complexity of the mass spectra is obtained by the formation of multiple adduct ions. The process of analyte ion formation during MALDI can generate multiple m/z peaks from a single lipid species due to the presence of alkali salts in tissues, resulting in the suppression of protonated adduct formation and the generation of multiple near isobaric ions which produce overlapping spatial distributions. Presented is a method to simultaneously remove O.C.T. and endogenous salts. This approach was applied to lipid imaging in order to prevent analyte suppression, simplify data interpretation, and improve sensitivity by promoting lipid protonation and reducing the formation of alkali adducts.


Assuntos
Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Humanos , Masculino , Camundongos , Polietilenoglicóis/química , Próstata/química , Próstata/patologia , Neoplasias da Próstata/química , Neoplasias da Próstata/patologia , Temperatura , Inclusão do Tecido/métodos
8.
Sci Rep ; 11(1): 4106, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602992

RESUMO

In chronic obstructive pulmonary disease (COPD) apoptotic bronchial epithelial cells are increased, and their phagocytosis by alveolar macrophages (AM) is decreased alongside bacterial phagocytosis. Epithelial cellular lipids, including those exposed on uncleared apoptotic bodies, can become oxidized, and may be recognized and presented as non-self by antigen presenting cells. CD1b is a lipid-presenting protein, previously only described in dendritic cells. We investigated whether CD1b is upregulated in COPD AM, and whether lipid oxidation products are found in the airways of cigarette smoke (CS) exposed mice. We also characterise CD1b for the first time in a range of macrophages and assess CD1b expression and phagocytic function in response to oxidised lipid. Bronchoalveolar lavage and exhaled breath condensate were collected from never-smoker, current-smoker, and COPD patients and AM CD1b expression and airway 8-isoprostane levels assessed. Malondialdehyde was measured in CS-exposed mouse airways by confocal/immunofluorescence. Oxidation of lipids produced from CS-exposed 16HBE14o- (HBE) bronchial epithelial cells was assessed by spectrophotometry and changes in lipid classes assessed by mass spectrometry. 16HBE cell toxicity was measured by flow cytometry as was phagocytosis, CD1b expression, HLA class I/II, and mannose receptor (MR) in monocyte derived macrophages (MDM). AM CD1b was significantly increased in COPD smokers (4.5 fold), COPD ex-smokers (4.3 fold), and smokers (3.9 fold), and AM CD1b significantly correlated with disease severity (FEV1) and smoking pack years. Airway 8-isoprostane also increased in smokers and COPD smokers and ex-smokers. Malondialdehyde was significantly increased in the bronchial epithelium of CS-exposed mice (MFI of 18.18 vs 23.50 for control). Oxidised lipid was produced from CS-exposed bronchial epithelial cells (9.8-fold of control) and showed a different overall lipid makeup to that of control total cellular lipid. This oxidised epithelial lipid significantly upregulated MDM CD1b, caused bronchial epithelial cell toxicity, and reduced MDM phagocytic capacity and MR in a dose dependent manner. Increased levels of oxidised lipids in the airways of COPD patients may be responsible for reduced phagocytosis and may become a self-antigen to be presented by CD1b on macrophages to perpetuate disease progression despite smoking cessation.


Assuntos
Antígenos CD1/imunologia , Metabolismo dos Lipídeos , Macrófagos Alveolares/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Citometria de Fluxo , Volume Expiratório Forçado , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Malondialdeído/metabolismo , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Pessoa de Meia-Idade , Oxirredução , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos , Capacidade Vital , Adulto Jovem
9.
Cell Mol Life Sci ; 78(1): 249-270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32170339

RESUMO

eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Morfolinas/farmacologia , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
10.
Mol Ther Methods Clin Dev ; 17: 174-187, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31909089

RESUMO

Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.

11.
Sci Rep ; 9(1): 15008, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628408

RESUMO

Patient-derived explant (PDE) culture of solid tumors is increasingly being applied to preclinical evaluation of novel therapeutics and for biomarker discovery. In this technique, treatments are added to culture medium and penetrate the tissue via a gelatin sponge scaffold. However, the penetration profile and final concentrations of small molecule drugs achieved have not been determined to date. Here, we determined the extent of absorption of the clinical androgen receptor antagonist, enzalutamide, into prostate PDEs, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser/desorption ionisation (MALDI) mass spectrometry imaging (MSI). In a cohort of 11 PDE tissues from eight individual patients, LC-MS/MS quantification of PDE homogenates confirmed enzalutamide (10 µM) uptake by all PDEs, which reached maximal average tissue concentration of 0.24-0.50 ng/µg protein after 48 h culture. Time dependent uptake of enzalutamide (50 µM) in PDEs was visualized using MALDI MSI over 24-48 h, with complete penetration throughout tissues evident by 6 h of culture. Drug signal intensity was not homogeneous throughout the tissues but had areas of markedly high signal that corresponded to drug target (androgen receptor)-rich epithelial regions of tissue. In conclusion, application of MS-based drug quantification and visualization in PDEs, and potentially other 3-dimensional model systems, can provide a more robust basis for experimental study design and interpretation of pharmacodynamic data.


Assuntos
Absorção Fisico-Química , Antagonistas de Receptores de Andrógenos/química , Antineoplásicos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/patologia , Espectrometria de Massas em Tandem/métodos , Idoso , Benzamidas , Células Cultivadas , Cromatografia Líquida , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Nitrilas , Feniltioidantoína/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Int J Cancer ; 142(9): 1865-1877, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29235102

RESUMO

Eukaryotic elongation factor 2 kinase (eEF2K) negatively regulates the elongation phase of mRNA translation and hence protein synthesis. Increasing evidence indicates that eEF2K plays an important role in the survival and migration of cancer cells and in tumor progression. As demonstrated by two-dimensional wound-healing and three-dimensional transwell invasion assays, knocking down or inhibiting eEF2K in cancer cells impairs migration and invasion of cancer cells. Conversely, exogenous expression of eEF2K or knocking down eEF2 (the substrate of eEF2K) accelerates wound healing and invasion. Importantly, using LC-HDMSE analysis, we identify 150 proteins whose expression is decreased and 73 proteins which are increased upon knocking down eEF2K in human lung carcinoma cells. Of interest, 34 downregulated proteins are integrins and other proteins implicated in cell migration, suggesting that inhibiting eEF2K may help prevent cancer cell mobility and metastasis. Interestingly, eEF2K promotes the association of integrin mRNAs with polysomes, providing a mechanism by which eEF2K may enhance their cellular levels. Consistent with this, genetic knock down or pharmacological inhibition of eEF2K reduces the protein expression levels of integrins. Notably, pharmacological or genetic inhibition of eEF2K almost completely blocked tumor growth and effectively prevented the spread of tumor cells in vivo. High levels of eEF2K expression were associated with invasive carcinoma and metastatic tumors. These data provide the evidence that eEF2K is a new potential therapeutic target for preventing tumor metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/fisiologia , Quinase do Fator 2 de Elongação/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase do Fator 2 de Elongação/biossíntese , Quinase do Fator 2 de Elongação/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Biossíntese de Proteínas , RNA Mensageiro/genética , Regulação para Cima
13.
J Neurochem ; 137(3): 409-22, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26762778

RESUMO

Repeated replacement of sulphamidase via cerebrospinal fluid injection is an effective treatment for pathological changes in the brain in mice and dogs with the lysosomal storage disorder, mucopolysaccharidosis type IIIA (MPS IIIA). Investigational trials of this approach are underway in children with this condition, however, infusions require attendance at a specialist medical facility. We sought to comprehensively evaluate the effectiveness of sustained-release (osmotic pump-delivered) enzyme replacement therapy in murine MPS IIIA as this method, if applied to humans, would require only subcutaneous administration of enzyme once the pump was installed. Six-week-old MPS IIIA and unaffected mice were implanted with subcutaneous mini-osmotic pumps connected to an infusion cannula directed at the right lateral ventricle. Either recombinant human sulphamidase or vehicle were infused over the course of 7 weeks, with pumps replaced part-way through the experimental period. We observed near-normalisation of primarily stored substrate (heparan sulphate) in both hemispheres of the MPS IIIA brain and cervical spinal cord, as determined using tandem mass spectrometry. Immunohistochemistry indicated a reduction in secondarily stored GM 3 ganglioside and neuroinflammatory markers. A bias towards the infusion side was seen in some, but not all outcomes. The recombinant enzyme appears stable under pump-like conditions for at least 1 month. Given that infusion pumps are in clinical use in other nervous system disorders, e.g. for treatment of spasticity or brain tumours, this treatment method warrants consideration for testing in large animal models of MPS IIIA and other lysosomal storage disorders that affect the brain. Clinical trials of repeated injection of replacement enzyme into CSF are underway in patients with the inherited neurodegenerative disorder mucopolysaccharidosis type IIIA. In this pre-clinical study, we examined an alternative approach - slow, continual infusion of enzyme using pumps. We observed significant reductions in substrate accumulation and other disease-based lesions in treated mouse brain. Thus, the strategy warrants consideration for testing in large animal models of MPS IIIA and also in other neurodegenerative lysosomal storage disorders.


Assuntos
Encéfalo/patologia , Terapia de Reposição de Enzimas/métodos , Hidrolases/uso terapêutico , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologia , Animais , Biomarcadores/metabolismo , Química Encefálica , Gliose/tratamento farmacológico , Gliose/patologia , Heparitina Sulfato/metabolismo , Humanos , Hidrolases/administração & dosagem , Bombas de Infusão Implantáveis , Ventrículos Laterais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Medula Espinal/metabolismo
14.
Anal Bioanal Chem ; 397(2): 587-601, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20204332

RESUMO

The development of tissue micro-array (TMA) technologies provides insights into high-throughput analysis of proteomics patterns from a large number of archived tumour samples. In the work reported here, matrix-assisted laser desorption/ionisation-ion mobility separation-mass spectrometry (MALDI-IMS-MS) profiling and imaging methodology has been used to visualise the distribution of several peptides and identify them directly from TMA sections after on-tissue tryptic digestion. A novel approach that combines MALDI-IMS-MSI and principal component analysis-discriminant analysis (PCA-DA) is described, which has the aim of generating tumour classification models based on protein profile patterns. The molecular classification models obtained by PCA-DA have been validated by applying the same statistical analysis to other tissue cores and patient samples. The ability to correlate proteomic information obtained from samples with known and/or unknown clinical outcome by statistical analysis is of great importance, since it may lead to a better understanding of tumour progression and aggressiveness and hence improve diagnosis, prognosis as well as therapeutic treatments. The selectivity, robustness and current limitations of the methodology are discussed.


Assuntos
Adenocarcinoma/patologia , Neoplasias Pancreáticas/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Análise Serial de Tecidos/métodos , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Proteínas/análise
15.
J Proteome Res ; 8(10): 4876-84, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19673544

RESUMO

MALDI-mass spectrometry imaging (MALDI-MSI) is a technique that allows proteomic information, that is, the spatial distribution and identification of proteins, to be obtained directly from tissue sections. The use of in situ enzymatic digestion as a sample pretreatment prior to MALDI-MSI analysis has been found to be useful for retrieving protein identification directly from formalin-fixed, paraffin-embedded (ffpe) tissue sections. Here, an improved method for the study of the distribution and the identification of peptides obtained after in situ digestion of fppe pancreatic tumor tissue sections by using MALDI-mass spectrometry imaging coupled with ion mobility separation (IMS) is described. MALDI-IMS-MS images of peptide obtained from pancreatic tumor tissue sections allowed the localization of tumor regions within the tissue section, while minimizing the peak interferences which were observed with conventional MALDI-TOF MSI. The use of ion mobility separation coupled with MALDI-MSI improved the selectivity and specificity of the method and, hence, enabled both the localization and in situ identification of glucose regulated protein 78 kDa (Grp78), a tumor biomarker, within pancreatic tumor tissue sections. These findings were validated using immunohistochemical staining.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Choque Térmico/metabolismo , Neoplasias Pancreáticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Chaperona BiP do Retículo Endoplasmático , Formaldeído , Humanos , Imuno-Histoquímica , Inclusão em Parafina , Fragmentos de Peptídeos/metabolismo , Reprodutibilidade dos Testes
16.
Proteomics ; 9(10): 2750-63, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19405023

RESUMO

The identification of proteins involved in tumour progression or which permit enhanced or novel therapeutic targeting is essential for cancer research. Direct MALDI analysis of tissue sections is rapidly demonstrating its potential for protein imaging and profiling in the investigation of a range of disease states including cancer. MALDI-mass spectrometry imaging (MALDI-MSI) has been used here for direct visualisation and in situ characterisation of proteins in breast tumour tissue section samples. Frozen MCF7 breast tumour xenograft and human formalin-fixed paraffin-embedded breast cancer tissue sections were used. An improved protocol for on-tissue trypsin digestion is described incorporating the use of a detergent, which increases the yield of tryptic peptides for both fresh frozen and formalin-fixed paraffin-embedded tumour tissue sections. A novel approach combining MALDI-MSI and ion mobility separation MALDI-tandem mass spectrometry imaging for improving the detection of low-abundance proteins that are difficult to detect by direct MALDI-MSI analysis is described. In situ protein identification was carried out directly from the tissue section by MALDI-MSI. Numerous protein signals were detected and some proteins including histone H3, H4 and Grp75 that were abundant in the tumour region were identified.


Assuntos
Adenocarcinoma/química , Proteínas de Neoplasias/análise , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/metabolismo , Animais , Neoplasias da Mama/química , Linhagem Celular Tumoral , Detergentes , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/química , Transplante de Neoplasias , Inclusão em Parafina , Sensibilidade e Especificidade
17.
Anal Chem ; 80(22): 8628-34, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18847214

RESUMO

During early-stage drug development, drug and metabolite distribution studies are carried out in animal tissues using a range of techniques, particularly whole body autoradiography (WBA). While widely employed, WBA has a number of limitations, including the following: expensive synthesis of radiolabeled drugs and analyte specificity and identification. WBA only images the radiolabel. MALDI MSI has been shown previously to be advantageous for imaging the distribution of a range of drugs and metabolites in whole body sections. Ion mobility separation (IMS) adds a further separation step to imaging experiments; demonstrated here is MALDI-IMS-MS whole body imaging of rats dosed at 6 mg/kg i.v. with an anticancer drug, vinblastine and shown is the distribution of the precursor ion m/z 811.4 and several product ions including m/z 793, 751, 733, 719, 691, 649, 524, and 355. The distribution of vinblastine within the ventricles of the brain is also depicted. Clearly demonstrated in these data are the removal of interfering isobaric ions within the images of m/z 811.4 and also of the transition m/z 811-751, resulting in a higher confidence in the imaging data. Within this work, IMS has shown to be advantageous in both MS and MS/MS imaging experiments by separating vinblastine from an endogenous isobaric lipid.


Assuntos
Antineoplásicos/análise , Antineoplásicos/farmacocinética , Vimblastina/análise , Vimblastina/farmacocinética , Animais , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição Tecidual , Xenobióticos/análise , Xenobióticos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA