Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 35(27): 3466-3473, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28527686

RESUMO

Bovine viral diarrhea virus (BVDV) is one of the most serious pathogens in cattle. Recently, we developed a novel adjuvant platform (TriAdj) that includes a toll-like receptor 3 agonist, poly (I:C); an innate defense regulatory peptide; and water-soluble polymer, poly[di(sodiumcarboxylatoethylphenoxy)]-phosphazene (PCEP). To develop a needle-free intradermal (ID) subunit vaccine, the BVDV type-2 E2 protein was formulated with TriAdj, and immune protection was evaluated in calves against a BVDV-2 strain. Intradermal delivery of E2/TriAdj elicited robust virus neutralizing antibodies and cell-mediated immune responses including CD4+ and CD8+ T-cell responses. The development of CD8+ T-cell responses in vaccinated calves indicates that TriAdj promotes cross-presentation. Upon challenge with virulent BVDV-2, the vaccinated calves showed no weight loss, leukopenia or virus shedding, and almost no temperature increase, in contrast to the control animals, which had severe clinical disease and shed virus for three to six days in nasal fluids and white blood cells. Intradermal vaccination was shown to attract various immune cell populations including dendritic cells, the most important antigen presenting cells. These data demonstrate that ID delivery is suitable as an administration route in cattle and that ID delivered, TriAdj-formulated E2 can protect cattle from BVDV-2.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Imunidade Inata , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Peso Corporal , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Bovinos , Febre/prevenção & controle , Injeções Intradérmicas , Leucopenia/prevenção & controle , Vacinas Virais/administração & dosagem , Eliminação de Partículas Virais
2.
J Virol ; 89(8): 4598-611, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673708

RESUMO

UNLABELLED: The major tegument protein of bovine herpesvirus 1 (BoHV-1), VP8, is essential for virus replication in cattle. VP8 is phosphorylated in vitro by casein kinase 2 (CK2) and BoHV-1 unique short protein 3 (US3). In this study, VP8 was found to be phosphorylated in both transfected and infected cells but was detected as a nonphosphorylated form in mature virions. This suggests that phosphorylation of VP8 is strictly controlled during different stages of the viral life cycle. The regulation and function of VP8 phosphorylation by US3 and CK2 were further analyzed. An in vitro kinase assay, site-directed mutagenesis, and liquid chromatography-mass spectrometry were used to identify the active sites for US3 and CK2. The two kinases phosphorylate VP8 at different sites, resulting in distinct phosphopeptide patterns. S(16) is a primary phosphoreceptor for US3, and it subsequently triggers phosphorylation at S(32). CK2 has multiple active sites, among which T(107) appears to be the preferred residue. Additionally, CK2 consensus motifs in the N terminus of VP8 are essential for phosphorylation. Based on these results, a nonphosphorylated VP8 mutant was constructed and used for further studies. In transfected cells phosphorylation was not required for nuclear localization of VP8. Phosphorylated VP8 appeared to recruit promyelocytic leukemia (PML) protein and to remodel the distribution of PML in the nucleus; however, PML protein did not show an association with nonphosphorylated VP8. This suggests that VP8 plays a role in resisting PML-related host antiviral defenses by redistributing PML protein and that this function depends on the phosphorylation of VP8. IMPORTANCE: The progression of VP8 phosphorylation over time and its function in BoHV-1 replication have not been characterized. This study demonstrates that activation of S(16) initiates further phosphorylation at S(32) by US3. Additionally, VP8 is phosphorylated by CK2 at several residues, with T(107) having the highest level of phosphorylation. Evidence for a difference in the phosphorylation status of VP8 in host cells and mature virus is presented for the first time. Phosphorylation was found to be a critical modification, which enables VP8 to attract and to redistribute PML protein in the nucleus. This might promote viral replication through interference with a PML-mediated antiviral defense. This study provides new insights into the regulation of VP8 phosphorylation and suggests a novel, phosphorylation-dependent function for VP8 in the life cycle of BoHV-1, which is important in view of the fact that VP8 is essential for virus replication in vivo.


Assuntos
Proteínas do Capsídeo/metabolismo , Bovinos/virologia , Herpesvirus Bovino 1/genética , Animais , Proteínas do Capsídeo/genética , Caseína Quinase II/metabolismo , Domínio Catalítico/genética , Cromatografia Líquida , Herpesvirus Bovino 1/metabolismo , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Vírion/metabolismo
3.
Vaccine ; 32(50): 6758-64, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25454860

RESUMO

Bovine viral diarrhea virus (BVDV) is still one of the most serious pathogens in cattle, meriting the development of improved vaccines. Recently, we developed a new adjuvant consisting of poly[di(sodium carboxylatoethylphenoxy)]-phosphazene (PCEP), either CpG ODN or poly(I:C), and an immune defense regulator (IDR) peptide. As this adjuvant has been shown to mediate the induction of robust, balanced immune responses, it was evaluated in an E2 subunit vaccine against BVDV in lambs and calves. The BVDV type 2 E2 protein was produced at high levels in a mammalian expression system and purified. When formulated with either CpG ODN or poly(I:C), together with IDR and PCEP, the E2 protein elicited high antibody titers and production of IFN-γ secreting cells in lambs. As the immune responses were stronger when poly(I:C) was used, the E2 protein with poly(I:C), IDR and PCEP was subsequently tested in cattle. Robust virus neutralizing antibodies as well as cell-mediated immune responses, including CD8(+) cytotoxic T cell (CTL) responses, were induced. The fact that CTL responses were demonstrated in calves vaccinated with an E2 protein subunit vaccine indicates that this adjuvant formulation promotes cross-presentation. Furthermore, upon challenge with a high dose of virulent BVDV-2, the vaccinated calves showed almost no temperature response, weight loss, leukopenia or virus replication, in contrast to the control animals, which had severe clinical disease. These data suggest that this E2 subunit formulation induces significant protection from BVDV-2 challenge, and thus is a promising BVDV vaccine candidate; in addition, the adjuvant platform has applications in bovine vaccines in general.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Doenças dos Bovinos/prevenção & controle , Vírus da Diarreia Viral Bovina Tipo 2/imunologia , Infecções por Pestivirus/veterinária , Doenças dos Ovinos/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/patologia , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Infecções por Pestivirus/patologia , Infecções por Pestivirus/prevenção & controle , Ovinos , Doenças dos Ovinos/patologia , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/administração & dosagem
4.
J Gen Virol ; 91(Pt 5): 1117-26, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20016039

RESUMO

The US3 gene product of bovine herpesvirus-1 (BoHV-1) is a protein kinase that is expressed early during infection and capable of autophosphorylation. By examining differentially labelled US3 moieties by co-immunoprecipitation, we demonstrated that the protein kinase interacts with itself in vitro, which supports autophosphorylation by US3. Based on its homology to other serine/threonine protein kinases, we defined two highly conserved lysines in US3, at position 195 within the ATP-binding pocket and at position 282 within the catalytic loop; altering either residue resulted in kinase-dead mutants, demonstrating that these two residues are critical for the catalytic activity of BoHV-1 US3. During immunoprecipitation experiments, US3 interacted weakly with VP22, another tegument protein of BoHV-1. Furthermore, VP22 co-localized with US3 inside the nucleus in BoHV-1-infected cells. In vitro kinase assays demonstrated that VP22 is phosphorylated not only by US3, but also by the cellular casein kinase 2 (CK2) protein. The selective CK2 protein kinase inhibitor, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) and the less specific CK2 inhibitor Kenpaullone reduced VP22 phosphorylation, while CK1, protein kinase C or protein kinase A inhibitors did not affect phosphorylation. When US3 was included with VP22 in the kinase assay in the presence of DMAT, a low level of VP22 phosphorylation was observed. These data demonstrate that BoHV-1 VP22 interacts with both CK2 and US3, and that CK2 is the major kinase phosphorylating VP22, with US3 playing a minor role.


Assuntos
Herpesvirus Bovino 1/enzimologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Caseína Quinase II/metabolismo , Bovinos , Linhagem Celular , Chlorocebus aethiops , Sequência Conservada , Imunoprecipitação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA