Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Biotechnol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375448

RESUMO

Unlike sequencing-based methods, which require cell lysis, optical pooled genetic screens enable investigation of spatial phenotypes, including cell morphology, protein subcellular localization, cell-cell interactions and tissue organization, in response to targeted CRISPR perturbations. Here we report a multimodal optical pooled CRISPR screening method, which we call CRISPRmap. CRISPRmap combines in situ CRISPR guide-identifying barcode readout with multiplexed immunofluorescence and RNA detection. Barcodes are detected and read out through combinatorial hybridization of DNA oligos, enhancing barcode detection efficiency. CRISPRmap enables in situ barcode readout in cell types and contexts that were elusive to conventional optical pooled screening, including cultured primary cells, embryonic stem cells, induced pluripotent stem cells, derived neurons and in vivo cells in a tissue context. We conducted a screen in a breast cancer cell line of the effects of DNA damage repair gene variants on cellular responses to commonly used cancer therapies, and we show that optical phenotyping pinpoints likely pathogenic patient-derived mutations that were previously classified as variants of unknown clinical significance.

2.
Res Sq ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39315275

RESUMO

Childhood interstitial lung disease (chILD) secondary to pulmonary surfactant deficiency is a devastating chronic lung disease in children. Clinical presentation includes mild to severe respiratory failure and fibrosis. There is no specific treatment, except lung transplantation, which is hampered by a severe shortage of donor organs, especially for young patients. Repair of lungs with chILD represents a longstanding therapeutic challenge but cell therapy is a promising strategy. As surfactant is produced by alveolar type II epithelial (ATII) cells, engraftment with normal or gene-corrected ATII cells might provide an avenue to cure. Here we used a chILD disease-like model, Sftpc -/- mice, to provide proof-of-principle for this approach. Sftpc -/- mice developed chronic interstitial lung disease with age and were hypersensitive to bleomycin. We could engraft wild-type ATII cells after low dose bleomycin conditioning. Transplanted ATII cells produced mature SPC and attenuated bleomycin-induced lung injury up to two months post-transplant. This study demonstrates that partial replacement of mutant ATII cells can promote lung repair in a mouse model of chILD-like disease.

3.
Cell Rep ; 43(7): 114388, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935497

RESUMO

In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.


Assuntos
Diferenciação Celular , Dano ao DNA , Células-Tronco Hematopoéticas , Megacariócitos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Camundongos , Megacariócitos/metabolismo , Megacariócitos/citologia , Trombopoese , Pontos de Checagem da Fase G2 do Ciclo Celular , Camundongos Endogâmicos C57BL , Humanos
4.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333356

RESUMO

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM), can self-renew, and generate all cells of the hematopoietic system. 1 Most hematopoietic lineages arise through successive, increasingly lineage-committed progenitors. In contrast, megakaryocytes (MKs), hyperploid cells that generate platelets essential to hemostasis, can derive rapidly and directly from HSCs. 2 The underlying mechanism is unknown however. Here we show that DNA damage and subsequent arrest in the G2 phase of the cell cycle rapidly induce MK commitment specifically in HSCs, but not in progenitors, through an initially predominantly post-transcriptional mechanism. Cycling HSCs show extensive replication-induced DNA damage associated with uracil misincorporation in vivo and in vitro . Consistent with this notion, thymidine attenuated DNA damage, rescued HSC maintenance and reduced the generation of CD41 + MK-committed HSCs in vitro . Similarly, overexpression of the dUTP-scavenging enzyme, dUTPase, enhanced in vitro maintenance of HSCs. We conclude that a DNA damage response drives direct megakaryopoiesis and that replication stress-induced direct megakaryopoiesis, at least in part caused by uracil misincorporation, is a barrier to HSC maintenance in vitro . DNA damage-induced direct megakaryopoiesis may allow rapid generation of a lineage essential to immediate organismal survival, while simultaneously removing damaged HSCs and potentially avoiding malignant transformation of self-renewing stem cells.

5.
Nature ; 592(7853): 296-301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731931

RESUMO

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Assuntos
Aterosclerose/patologia , Hematopoiese Clonal , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Medula Óssea/metabolismo , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , RNA-Seq , Análise de Célula Única
6.
J Exp Med ; 216(9): 2038-2056, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31217193

RESUMO

Autosomal recessive IRF7 and IRF9 deficiencies impair type I and III IFN immunity and underlie severe influenza pneumonitis. We report three unrelated children with influenza A virus (IAV) infection manifesting as acute respiratory distress syndrome (IAV-ARDS), heterozygous for rare TLR3 variants (P554S in two patients and P680L in the third) causing autosomal dominant (AD) TLR3 deficiency. AD TLR3 deficiency can underlie herpes simplex virus-1 (HSV-1) encephalitis (HSE) by impairing cortical neuron-intrinsic type I IFN immunity to HSV-1. TLR3-mutated leukocytes produce normal levels of IFNs in response to IAV. In contrast, TLR3-mutated fibroblasts produce lower levels of IFN-ß and -λ, and display enhanced viral susceptibility, upon IAV infection. Moreover, the patients' iPSC-derived pulmonary epithelial cells (PECs) are susceptible to IAV. Treatment with IFN-α2b or IFN-λ1 rescues this phenotype. AD TLR3 deficiency may thus underlie IAV-ARDS by impairing TLR3-dependent, type I and/or III IFN-mediated, PEC-intrinsic immunity. Its clinical penetrance is incomplete for both IAV-ARDS and HSE, consistent with their typically sporadic nature.


Assuntos
Influenza Humana/genética , Padrões de Herança/genética , Pneumonia/genética , Receptor 3 Toll-Like/deficiência , Alelos , Criança , Pré-Escolar , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Evolução Fatal , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Recém-Nascido , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Interferons/metabolismo , Mutação com Perda de Função/genética , Pulmão/patologia , Masculino , Mutação de Sentido Incorreto/genética , Poli I-C/farmacologia , Transporte Proteico
7.
Cell Stem Cell ; 25(2): 225-240.e7, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31178255

RESUMO

The specific cellular physiology of hematopoietic stem cells (HSCs) is underexplored, and their maintenance in vitro remains challenging. We discovered that culture of HSCs in low calcium increased their maintenance as determined by phenotype, function, and single-cell expression signature. HSCs are endowed with low intracellular calcium conveyed by elevated activity of glycolysis-fueled plasma membrane calcium efflux pumps and a low-bone-marrow interstitial fluid calcium concentration. Low-calcium conditions inhibited calpain proteases, which target ten-eleven translocated (TET) enzymes, of which TET2 was required for the effect of low calcium conditions on HSC maintenance in vitro. These observations reveal a physiological feature of HSCs that can be harnessed to improve their maintenance in vitro.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Calpaína/metabolismo , Autorrenovação Celular , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dioxigenases , Glicólise , Hematopoese , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única , Transcriptoma
8.
J Exp Med ; 216(3): 674-687, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30737256

RESUMO

Cancer models based on cells derived from human embryonic stem cells (hESCs) may reveal why certain constellations of genetic changes drive carcinogenesis in specialized lineages. Here we demonstrate that inhibition of NOTCH signaling induces up to 10% of lung progenitor cells to form pulmonary neuroendocrine cells (PNECs), putative precursors to small cell lung cancers (SCLCs), and we can increase PNECs by reducing levels of retinoblastoma (RB) proteins with inhibitory RNA. Reducing levels of TP53 protein or expressing mutant KRAS or EGFR genes did not induce or expand PNECs, but tumors resembling early-stage SCLC grew in immunodeficient mice after subcutaneous injection of PNEC-containing cultures in which expression of both RB and TP53 was blocked. Single-cell RNA profiles of PNECs are heterogeneous; when RB levels are reduced, the profiles resemble those from early-stage SCLC; and when both RB and TP53 levels are reduced, the transcriptome is enriched with cell cycle-specific RNAs. Our findings suggest that genetic manipulation of hESC-derived pulmonary cells will enable studies of this recalcitrant cancer.


Assuntos
Células-Tronco Embrionárias Humanas/patologia , Neoplasias Pulmonares/patologia , Células Neuroendócrinas/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Pulmão/citologia , Camundongos Endogâmicos NOD , Células Neuroendócrinas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Notch/metabolismo , Proteína do Retinoblastoma/metabolismo , Análise de Célula Única , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Clin Invest ; 128(8): 3250-3264, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878897

RESUMO

PRDM16 is a transcriptional coregulator involved in translocations in acute myeloblastic leukemia (AML), myelodysplastic syndromes, and T acute lymphoblastic leukemia that is highly expressed in and required for the maintenance of hematopoietic stem cells (HSCs), and can be aberrantly expressed in AML. Prdm16 is expressed as full-length (fPrdm16) and short (sPrdm16) isoforms, the latter lacking the N-terminal PR domain. The role of both isoforms in normal and malignant hematopoiesis is unclear. We show here that fPrdm16 was critical for HSC maintenance, induced multiple genes involved in GTPase signaling, and repressed inflammation, while sPrdm16 supported B cell development biased toward marginal zone B cells and induced an inflammatory signature. In a mouse model of human MLL-AF9 leukemia, fPrdm16 extended latency, while sPrdm16 shortened latency and induced a strong inflammatory signature, including several cytokines and chemokines that are associated with myelodysplasia and with a worse prognosis in human AML. Finally, in human NPM1-mutant and in MLL-translocated AML, high expression of PRDM16, which negatively impacts outcome, was associated with inflammatory gene expression, thus corroborating the mouse data. Our observations demonstrate distinct roles for Prdm16 isoforms in normal HSCs and AML, and identify sPrdm16 as one of the drivers of prognostically adverse inflammation in leukemia.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Leucêmica da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Nucleofosmina , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/genética
10.
Cell Stem Cell ; 21(6): 747-760.e7, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29198940

RESUMO

Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here we describe an auto-/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc+ myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H2 receptor on MB-HSCs to promote their quiescence and self-renewal. Depleting histamine-producing cells enforces cell cycle entry, induces loss of serial transplant capacity, and sensitizes animals to chemotherapeutic injury. Increasing demand for myeloid cells via lipopolysaccharide (LPS) treatment specifically recruits MB-HSCs and progenitors into the cell cycle; cycling MB-HSCs fail to revert into quiescence in the absence of histamine feedback, leading to their depletion, while an H2 agonist protects MB-HSCs from depletion after sepsis. Thus, histamine couples lineage-specific physiological demands to intrinsically primed MB-HSCs to enforce homeostasis.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Histamina/metabolismo , Células Mieloides/metabolismo , Animais , Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Citometria de Fluxo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Células Mieloides/efeitos dos fármacos
11.
Cell Stem Cell ; 21(6): 725-729.e4, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29198942

RESUMO

Hematopoietic stem cells (HSCs) produce most cellular energy through glycolysis rather than through mitochondrial respiration. Consistent with this notion, mitochondrial mass has been reported to be low in HSCs. However, we found that staining with MitoTracker Green, a commonly used dye to measure mitochondrial content, leads to artefactually low fluorescence specifically in HSCs because of dye efflux. Using mtDNA quantification, enumeration of mitochondrial nucleoids, and fluorescence intensity of a genetically encoded mitochondrial reporter, we unequivocally show here that HSCs and multipotential progenitors (MPPs) have higher mitochondrial mass than lineage-committed progenitors and mature cells. Despite similar mitochondrial mass, respiratory capacity of MPPs exceeds that of HSCs. Furthermore, although elevated mitophagy has been invoked to explain low mitochondrial mass in HSCs, we observed that mitochondrial turnover capacity is comparatively low in HSCs. We propose that the role of mitochondria in HSC biology may have to be revisited in light of these findings.


Assuntos
Corantes/química , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3
12.
Sci Adv ; 3(8): e1700521, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28875163

RESUMO

End-stage lung disease is the third leading cause of death worldwide, accounting for 400,000 deaths per year in the United States alone. To reduce the morbidity and mortality associated with lung disease, new therapeutic strategies aimed at promoting lung repair and increasing the number of donor lungs available for transplantation are being explored. Because of the extreme complexity of this organ, previous attempts at bioengineering functional lungs from fully decellularized or synthetic scaffolds lacking functional vasculature have been largely unsuccessful. An intact vascular network is critical not only for maintaining the blood-gas barrier and allowing for proper graft function but also for supporting the regenerative cells. We therefore developed an airway-specific approach to removing the pulmonary epithelium, while maintaining the viability and function of the vascular endothelium, using a rat model. The resulting vascularized lung grafts supported the attachment and growth of human adult pulmonary cells and stem cell-derived lung-specified epithelial cells. We propose that de-epithelialization of the lung with preservation of intact vasculature could facilitate cell therapy of pulmonary epithelium and enable bioengineering of functional lungs for transplantation.


Assuntos
Bioengenharia , Transplante de Pulmão , Pulmão/irrigação sanguínea , Pulmão/fisiologia , Regeneração , Animais , Bioengenharia/métodos , Sobrevivência Celular , Matriz Extracelular , Imunofluorescência , Pulmão/ultraestrutura , Músculo Liso , Ratos , Medicina Regenerativa , Mucosa Respiratória , Alicerces Teciduais
13.
Nat Cell Biol ; 19(5): 542-549, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28436965

RESUMO

Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.


Assuntos
Técnicas de Cultura de Células , Pulmão/patologia , Organoides/patologia , Células-Tronco Pluripotentes/patologia , Fibrose Pulmonar/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Predisposição Genética para Doença , Humanos , Pulmão/metabolismo , Pulmão/virologia , Transplante de Pulmão , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos NOD , Mutação , Organogênese , Organoides/metabolismo , Organoides/transplante , Organoides/virologia , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Células-Tronco Pluripotentes/virologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Fatores de Tempo
14.
Curr Opin Cell Biol ; 49: 91-98, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29309987

RESUMO

Hematopoietic stem cells (HSCs) preferentially use glycolysis rather than mitochondrial oxidative phosphorylation for energy production. While glycolysis in HSC is typically viewed as response to a hypoxic bone marrow environment that protects HSC from damaging reactive oxygen species, other interpretations are possible. Furthermore, recent evidence directly supports a critical role for mitochondria in the maintenance and function of HSCs that goes beyond ATP production. Here, we review recent advances in our understanding of metabolism and the role of mitochondria in the biology of HSCs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo , Humanos
15.
Cell Rep ; 17(12): 3142-3152, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009285

RESUMO

Regeneration requires related cells to diverge in fate. We show that activated lymphocytes yield sibling cells with unequal elimination of aged mitochondria. Disparate mitochondrial clearance impacts cell fate and reflects larger constellations of opposing metabolic states. Differentiation driven by an anabolic constellation of PI3K/mTOR activation, aerobic glycolysis, inhibited autophagy, mitochondrial stasis, and ROS production is balanced with self-renewal maintained by a catabolic constellation of AMPK activation, mitochondrial elimination, oxidative metabolism, and maintenance of FoxO1 activity. Perturbations up and down the metabolic pathways shift the balance of nutritive constellations and cell fate owing to self-reinforcement and reciprocal inhibition between anabolism and catabolism. Cell fate and metabolic state are linked by transcriptional regulators, such as IRF4 and FoxO1, with dual roles in lineage and metabolic choice. Instructing some cells to utilize nutrients for anabolism and differentiation while other cells catabolically self-digest and self-renew may enable growth and repair in metazoa.


Assuntos
Proteína Forkhead Box O1/genética , Fatores Reguladores de Interferon/genética , Ativação Linfocitária/genética , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Animais , Autofagia/genética , Diferenciação Celular/genética , Proteína Forkhead Box O1/metabolismo , Glicólise , Hematopoese/genética , Fatores Reguladores de Interferon/metabolismo , Metabolismo/genética , Camundongos , Mitocôndrias/genética , Fosfatidilinositol 3-Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Regeneração/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
16.
Nature ; 529(7587): 528-31, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26789249

RESUMO

Haematopoietic stem cells (HSCs), which sustain production of all blood cell lineages, rely on glycolysis for ATP production, yet little attention has been paid to the role of mitochondria. Here we show in mice that the short isoform of a critical regulator of HSCs, Prdm16 (refs 4, 5), induces mitofusin 2 (Mfn2), a protein involved in mitochondrial fusion and in tethering of mitochondria to the endoplasmic reticulum. Overexpression and deletion studies, including single-cell transplantation assays, revealed that Mfn2 is specifically required for the maintenance of HSCs with extensive lymphoid potential, but not, or less so, for the maintenance of myeloid-dominant HSCs. Mfn2 increased buffering of intracellular Ca(2+), an effect mediated through its endoplasmic reticulum-mitochondria tethering activity, thereby negatively regulating nuclear translocation and transcriptional activity of nuclear factor of activated T cells (Nfat). Nfat inhibition rescued the effects of Mfn2 deletion in HSCs, demonstrating that negative regulation of Nfat is the prime downstream mechanism of Mfn2 in the maintenance of HSCs with extensive lymphoid potential. Mitochondria therefore have an important role in HSCs. These findings provide a mechanism underlying clonal heterogeneity among HSCs and may lead to the design of approaches to bias HSC differentiation into desired lineages after transplantation.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/citologia , Transporte Ativo do Núcleo Celular , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Linhagem da Célula , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Fibroblastos , Linfócitos/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Células Mieloides/citologia , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
Nat Protoc ; 10(3): 413-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25654758

RESUMO

Lung and airway epithelial cells generated in vitro from human pluripotent stem cells (hPSCs) have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of hPSCs into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development, and it takes ∼50 d. First, definitive endoderm (DE) is induced in the presence of high concentrations of activin A. Subsequently, lung-biased anterior foregut endoderm (AFE) is specified by sequential inhibition of bone morphogenetic protein (BMP), transforming growth factor-ß (TGF-ß) and Wnt signaling. AFE is then ventralized by applying Wnt, BMP, fibroblast growth factor (FGF) and retinoic acid (RA) signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, cAMP and glucocorticoid agonism. This protocol is conducted in defined conditions, it does not involve genetic manipulation of the cells and it results in cultures in which the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Células-Tronco Pluripotentes/citologia , Sistema Respiratório/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Humanos , Técnicas In Vitro/métodos
19.
Proc Natl Acad Sci U S A ; 111(8): 3122-7, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516162

RESUMO

The B-myb (MYBL2) gene is a member of the MYB family of transcription factors and is involved in cell cycle regulation, DNA replication, and maintenance of genomic integrity. However, its function during adult development and hematopoiesis is unknown. We show here that conditional inactivation of B-myb in vivo results in depletion of the hematopoietic stem cell (HSC) pool, leading to profound reductions in mature lymphoid, erythroid, and myeloid cells. This defect is autonomous to the bone marrow and is first evident in stem cells, which accumulate in the S and G2/M phases. B-myb inactivation also causes defects in the myeloid progenitor compartment, consisting of depletion of common myeloid progenitors but relative sparing of granulocyte-macrophage progenitors. Microarray studies indicate that B-myb-null LSK(+) cells differentially express genes that direct myeloid lineage development and commitment, suggesting that B-myb is a key player in controlling cell fate. Collectively, these studies demonstrate that B-myb is essential for HSC and progenitor maintenance and survival during hematopoiesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células Progenitoras Mieloides/fisiologia , Transativadores/metabolismo , Animais , Transplante de Medula Óssea , Cruzamentos Genéticos , Primers do DNA/genética , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Exp Hematol ; 42(3): 192-203.e1, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24269847

RESUMO

FLT3 is one of the most frequently mutated genes in acute leukemias. However, the role in leukemogenesis of wild-type (wt) FLT3, which is highly expressed in many hematologic malignancies, is unclear. We show here that in mouse models established by retroviral transduction of leukemic fusion proteins, deletion of Flt3 strongly inhibits MLL-ENL and to lesser extent p210(BCR-ABL)-induced leukemogenesis, but has no effect in MLL-AF9 or AML1-ETO9a models. Flt3 acts at the level of leukemic stem cells (LSCs), as a fraction of LSCs in MLL-ENL, but not in MLL-AF9-induced leukemia, expressed Flt3 in vivo, and Flt3 expression on LSCs was associated with leukemia development in this model. Furthermore, efficiency of MLL-ENL, but not of MLL-AF9-induced leukemia induction was significantly enhanced after transduction of Flt3(+) compared to Flt3(-) wt myeloid progenitors. However, Flt3 is not required for immortalization of bone marrow cells in vitro by MLL-ENL and does not affect colony formation by MLL-ENL LSCs in vitro, suggesting that in vitro models do not reflect the in vivo biology of MLL-ENL leukemia with respect to Flt3 requirement. We conclude that wt Flt3 plays a role in leukemia initiation in vivo, which is, however, not universal.


Assuntos
Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Leucemia/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Citometria de Fluxo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Tirosina Quinase 3 Semelhante a fms/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA