Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Pharm ; 654: 123965, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38442796

RESUMO

The oral bioavailability of paclitaxel is limited due to low solubility and high affinity for the P-glycoprotein (P-gp) efflux transporter. Here we hypothesized that maximizing the intestinal paclitaxel levels through apparent solubility enhancement and controlling thesimultaneous release of both paclitaxel and the P-gp inhibitor encequidar from amorphous solid dispersions (ASDs) would increase the oral bioavailability of paclitaxel. ASDs of paclitaxel and encequidar in polyvinylpyrrolidone K30 (PVP-K30), hydroxypropylmethylcellulose 5 (HPMC-5), and hydroxypropylmethylcellulose 4 K (HPMC-4K) were hence prepared by freeze-drying. In vitro dissolution studies showed that both compounds were released fastest from PVP-K30, then from HPMC-5, and slowest from HPMC-4K ASDs. The dissolution of paclitaxel from all polymers resulted in stable concentration levels above the apparent solubility. The pharmacokinetics of paclitaxel after oral administration to male Sprague-Dawley rats was investigated with or without 1 mg/kg encequidar, as amorphous solids or polymer-based ASDs. The bioavailability of paclitaxel increased 3- to 4-fold when administered as polymer-based ASDs relative to solid amorphous paclitaxel. However, when amorphous paclitaxel was co-administered with encequidar, either as an amorphous powder or as a polymer-based ASD, the bioavailability increased 2- to 4-fold, respectively. Interestingly, a noticeable increase in paclitaxel bioavailability of 24-fold was observed when paclitaxel and encequidar were co-administered as HPMC-5-based ASDs. We, therefore, suggest that controlling the dissolution rate of paclitaxel and encequidar in order to obtain simultaneous and timed release from polymer-based ASDs is a strategy to increase oral paclitaxel bioavailability.


Assuntos
Polímeros , Povidona , Ratos , Masculino , Animais , Disponibilidade Biológica , Ratos Sprague-Dawley , Derivados da Hipromelose , Solubilidade
2.
Chem Res Toxicol ; 36(7): 1129-1139, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37294641

RESUMO

Drug-induced liver injury (DILI), believed to be a multifactorial toxicity, has been a leading cause of attrition of small molecules during discovery, clinical development, and postmarketing. Identification of DILI risk early reduces the costs and cycle times associated with drug development. In recent years, several groups have reported predictive models that use physicochemical properties or in vitro and in vivo assay endpoints; however, these approaches have not accounted for liver-expressed proteins and drug molecules. To address this gap, we have developed an integrated artificial intelligence/machine learning (AI/ML) model to predict DILI severity for small molecules using a combination of physicochemical properties and off-target interactions predicted in silico. We compiled a data set of 603 diverse compounds from public databases. Among them, 164 were categorized as Most DILI (M-DILI), 245 as Less DILI (L-DILI), and 194 as No DILI (N-DILI) by the FDA. Six machine learning methods were used to create a consensus model for predicting the DILI potential. These methods include k-nearest neighbor (k-NN), support vector machine (SVM), random forest (RF), Naïve Bayes (NB), artificial neural network (ANN), logistic regression (LR), weighted average ensemble learning (WA) and penalized logistic regression (PLR). Among the analyzed ML methods, SVM, RF, LR, WA, and PLR identified M-DILI and N-DILI compounds, achieving a receiver operating characteristic area under the curve of 0.88, sensitivity of 0.73, and specificity of 0.9. Approximately 43 off-targets, along with physicochemical properties (fsp3, log S, basicity, reactive functional groups, and predicted metabolites), were identified as significant factors in distinguishing between M-DILI and N-DILI compounds. The key off-targets that we identified include: PTGS1, PTGS2, SLC22A12, PPARγ, RXRA, CYP2C9, AKR1C3, MGLL, RET, AR, and ABCC4. The present AI/ML computational approach therefore demonstrates that the integration of physicochemical properties and predicted on- and off-target biological interactions can significantly improve DILI predictivity compared to chemical properties alone.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Transportadores de Ânions Orgânicos , Humanos , Inteligência Artificial , Teorema de Bayes , Aprendizado de Máquina , Bases de Dados Factuais , Proteínas de Transporte de Cátions Orgânicos
3.
Int J Pharm ; 642: 123094, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37263451

RESUMO

P-glycoprotein (P-gp) inhibitors, like zosuquidar, partly increase oral bioavailability of P-gp substrates, such as etoposide. Here, it was hypothesised that co-release of etoposide and zosuquidar from amorphous solid dispersions (ASDs) may further increase oral etoposide bioavailability. This was envisioned through simultaneous co-release and subsequent spatiotemporal association of etoposide and zosuquidar in the small intestinal lumen. To further achieve this, ASDs of etoposide and zosuquidar in polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC) 5, and HPMC 4 k were prepared by freeze-drying. From these ASDs, etoposide release was fastest from PVP, then HPMC 5 and slowest from HPMC 4. Release from PVP and HPMC5 resulted in stable supersaturations of etoposide. In transcellular permeability studies across MDCKII-MDR1 cell monolayers, the accumulated amount of etoposide increased 3.7-4.9-fold from amorphous etoposide or when incorporated into PVP- or HPMC 5-based ASDs, compared to crystalline etoposide. In vivo, the oral bioavailability in Sprague Dawley rats increased from 1.0 to 2.4-3.4 %, when etoposide was administered as amorphous drug or in ASDs. However, when etoposide and zosuquidar were co-administered, the oral bioavailability increased further to 8.2-18 %. Interestingly, a distinct increase in oral etoposide bioavailability to 26 % was observed when etoposide and zosuquidar were co-administration in HPMC5-based ASDs. The supersaturation of etoposide as well as the simultaneous co-release of etoposide and zosuquidar in the small intestinal lumen may explain the observed bioavailability increase. Overall, this study suggested that simultaneous co-release of an amorphous P-gp substrate and inhibitor may be a novel and viable formulation strategy to increase the bioavailability P-gp substrates.


Assuntos
Povidona , Ratos , Animais , Etoposídeo , Disponibilidade Biológica , Solubilidade , Ratos Sprague-Dawley , Preparações Farmacêuticas/química , Povidona/química , Derivados da Hipromelose/química
4.
Eur J Pharm Sci ; 188: 106481, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244450

RESUMO

Intestinal organoids derived from LGR5+ adult stem cells allow for long-term culturing, more closely resemble human physiology than traditional intestinal models, like Caco-2, and have been established for several species. Here we evaluated intestinal organoids for drug disposition, metabolism, and safety applications. Enterocyte-enriched human duodenal organoids were cultured as monolayers to enable bidirectional transport studies. 3D enterocyte-enriched human duodenal and colonic organoids were incubated with probe substrates of major intestinal drug metabolizing enzymes (DMEs). To distinguish human intestinal toxic (high incidence of diarrhea in clinical trials and/or black box warning related to intestinal side effects) from non-intestinal toxic compounds, ATP-based cell viability was used as a readout, and compounds were ranked based on their IC50 values in relation to their 30-times maximal total plasma concentration (Cmax). To assess if rat and dog organoids reproduced the respective in vivo intestinal safety profiles, ATP-based viability was assessed in rat and dog organoids and compared to in vivo intestinal findings when available. Human duodenal monolayers discriminated high and low permeable compounds and demonstrated functional activity for the main efflux transporters Multi drug resistant protein 1 (MDR1, P-glycoprotein P-gp) and Breast cancer resistant protein (BCRP). Human 3D duodenal and colonic organoids also showed metabolic activity for the main intestinal phase I and II DMEs. Organoids derived from specific intestinal segments showed activity differences in line with reported DMEs expression. Undifferentiated human organoids accurately distinguished all but one compound from the test set of non-toxic and toxic drugs. Cytotoxicity in rat and dog organoids correlated with preclinical toxicity findings and observed species sensitivity differences between human, rat, and dog organoids. In conclusion, the data suggest intestinal organoids are suitable in vitro tools for drug disposition, metabolism, and intestinal toxicity endpoints. The possibility to use organoids from different species, and intestinal segment holds great potential for cross-species and regional comparisons.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Adulto , Humanos , Animais , Cães , Ratos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Células CACO-2 , Organoides , Trifosfato de Adenosina
5.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 1107-1118, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273250

RESUMO

Erdafitinib is a potent oral pan-fibroblast growth factor receptor inhibitor being developed as oncology drug for patients with alterations in the fibroblast growth factor receptor pathway. Erdafitinib binds preferentially to α1-acid glycoprotein (AGP) and is primarily metabolized by cytochrome P450 (CYP) 2C9 and 3A4. This article describes a physiologically based pharmacokinetic (PBPK) model for erdafitinib to assess the drug-drug interaction (DDI) potential of CYP3A4 and CYP2C9 inhibitors and CYP3A4/CYP2C9 inducers on erdafitinib pharmacokinetics (PK) in patients with cancer exhibiting higher AGP levels and in populations with different CYP2C9 genotypes. Erdafitinib's DDI potential as a perpetrator for transporter inhibition and for time-dependent inhibition and/or induction of CYP3A was also evaluated. The PBPK model incorporated input parameters from various in vitro and clinical PK studies, and the model was verified using a clinical DDI study with itraconazole and fluconazole. Erdafitinib clearance in the PBPK model consisted of multiple pathways (CYP2C9/3A4, renal, intestinal; additional hepatic clearance), making the compound less susceptible to DDIs. In poor-metabolizing CYP2C9 populations carrying the CYP2C9*3/*3 genotype, simulations shown clinically relevant increase in erdafitinib plasma concentrations. Simulated luminal and enterocyte concentration showed potential risk of P-glycoprotein inhibition with erdafitinib in the first 5 h after dosing, and simulations showed this interaction can be avoided by staggering erdafitinib and digoxin dosing. Other than a simulated ~ 60% exposure reduction with strong CYP3A/2C inducers such as rifampicin, other DDI liabilities were minimal and considered not clinically relevant.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos , Pirazóis/farmacocinética , Quinoxalinas/farmacocinética , Antineoplásicos/farmacocinética , Citocromo P-450 CYP2C9/efeitos dos fármacos , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/genética , Indutores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Interações Medicamentosas , Genótipo , Humanos , Orosomucoide/metabolismo
6.
J Pharm Sci ; 110(1): 259-267, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002468

RESUMO

NSAIDs such as celecoxib and sulindac play a critical role in the treatment of colorectal cancer, yet it is not understood how sufficiently high concentrations are reached in colonic tissue. We previously demonstrated that an incomplete small intestinal absorption of celecoxib enables gut driven drug accumulation in caecal tissue, which is most likely needed for inducing remission. However, a multistage dissolution experiment suggested a more extensive absorption of sulindac relative to celecoxib, though still incomplete. To study whether caecal accumulation of sulindac is solely plasma driven or also gut driven, we performed an exploratory clinical study in healthy volunteers. After intake of a tablet of sulindac (200 mg; Arthrocine), two colonoscopies (1.0-2.5 h, and 6.0-7.5 h after drug intake) were performed to assess concentrations of sulindac and metabolites in plasma, caecal tissue and caecal contents. We observed that sulindac, even without the use of a colon-targeted delivery strategy, can arrive at the colonic lumen due to incomplete absorption and biliary excretion, and that the microbiota can catalyse the production of sulindac sulfide, which then accumulates in a high and local manner in the colonic tissue. These data can be relevant for drug development in the treatment of colorectal adenomas and cancer.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Anti-Inflamatórios não Esteroides/uso terapêutico , Celecoxib , Neoplasias do Colo/tratamento farmacológico , Humanos , Sulindaco
7.
Toxicol Appl Pharmacol ; 403: 115163, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32730777

RESUMO

During its clinical development fialuridine caused liver toxicity and the death of five patients. This case remains relevant due to the continued development of mechanistically-related compounds against a back-drop of simple in vitro models which remain limited for the preclinical detection of such delayed toxicity. Here, proteomic investigation of a differentiated, HepaRG, and proliferating, HepG2 cell model was utilised to confirm the presence of the hENT1 transporter, thymidine kinase-1 and -2 (TK1, TK2) and thymidylate kinase, all essential in order to reproduce the cellular activation and disposition of fialuridine in the clinic. Acute metabolic modification assays could only identify mitochondrial toxicity in HepaRG cells following extended dosing, 2 weeks. Toxic effects were observed around 10 µM, which is within a range of 10-15 X approximate Cmax. HepaRG cell death was accompanied by a significant decrease in mitochondrial DNA content, indicative of inhibition of mitochondrial replication, and a subsequent reduction in mitochondrial respiration and the activity of mitochondrial respiratory complexes, not replicated in HepG2 cells. The structural epimer of fialuridine, included as a pharmacological negative control, was shown to have no cytotoxic effects in HepaRG cells up to 4 weeks. Overall, these comparative studies demonstrate the HepaRG model has translational relevance for fialuridine toxicity and therefore may have potential in investigating the inhibition of mitochondrial replication over prolonged exposure for other toxicants.


Assuntos
Antivirais/farmacologia , Arabinofuranosiluracila/análogos & derivados , Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Arabinofuranosiluracila/farmacologia , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/fisiologia , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/fisiologia
8.
Int J Pharm ; 583: 119399, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376439

RESUMO

It has been suggested that oral absorption of low-permeable P-glycoprotein (P-gp) substrates can be increased through saturation of P-gp. For BCS class IV drug substances, saturating P-gp is challenging due to low aqueous solubility. The present study investigated if the BCS IV drug substance etoposide could be solubilized to a concentration saturating P-gp after oral administration. A formulation consisting of 10% (w/v) of pluronic® F-127 and polyvinylpyrrolidone/vinyl acetate (PVP/VA), and 57% (v/v) ethanol enhanced etoposide's solubility approximately 100 times (16 mg mL-1) compared to its aqueous solubility. In vitro, this formulation was stable upon dilution in simulated intestinal fluid. In male Sprague-Dawley rats, oral administration of increasing solubilized etoposide doses using the formulation matrix increased the AUC0-∞ of etoposide dose-proportionally but resulted in a lower absolute oral bioavailability (F) and rate of absorption as compared to control. At the highest investigated dose (100 mg kg-1), AUC0-∞ and Cmax were significantly increased by 2.9- and 1.4-fold, respectively, compared to control dosed at 20 mg kg-1. A single oral dose of 20 mg kg-1 zosuquidar followed by 20 mg kg-1 oral etoposide increased F 8.6-fold. In conclusion, a stable formulation with improved etoposide solubility was developed, yet the formulation did not result in increased oral bioavailability of etoposide.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Etoposídeo/administração & dosagem , Etoposídeo/farmacocinética , Absorção Intestinal , Mucosa Intestinal/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Dibenzocicloeptenos/administração & dosagem , Composição de Medicamentos , Estabilidade de Medicamentos , Etanol/química , Etoposídeo/química , Humanos , Injeções Intravenosas , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Masculino , Modelos Biológicos , Poloxâmero/química , Polivinil/química , Povidona/química , Quinolinas/administração & dosagem , Ratos Sprague-Dawley , Solubilidade
9.
Nat Commun ; 11(1): 1393, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170132

RESUMO

Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.


Assuntos
Aminoácidos/metabolismo , Carcinoma Hepatocelular/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Citocromo P-450 CYP3A , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito , Fator 3-gama Nuclear de Hepatócito , Ensaios de Triagem em Larga Escala , Proteínas de Homeodomínio , Humanos , Fígado , Masculino , Engenharia Metabólica , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Células-Tronco Pluripotentes , Células-Tronco , Transcriptoma , Proteínas Supressoras de Tumor
10.
Eur J Pharm Sci ; 145: 105242, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32014580

RESUMO

Although the effect of NSAIDs such as celecoxib on the progression of colorectal polyps has been established, it is currently unknown how sufficiently high concentrations of celecoxib are reached in colonic tissue. Indeed, the lipophilic and poorly soluble celecoxib is orally dosed as an immediate release capsule without any colon-targeting delivery strategy. In the present study, we aimed to distinguish between plasma and gut driven caecal tissue accumulation of celecoxib in healthy volunteers. After developing a protocol to reliably collect colonic biopsies and contents, the disposition of celecoxib was assessed in plasma, caecal tissue and caecal contents collected after intake of a celecoxib capsule (200 mg; Celebrex®) with 240 mL of tap water. During a first colonoscopy (1.0-2.5 h after drug intake), plasma concentrations of celecoxib and its carboxy metabolite were increasing, while caecal tissue concentrations were relatively low. As no celecoxib was present in caecal contents, tissue accumulation was clearly plasma driven. During a second colonoscopy (6.0-7.5 h after drug intake), tissue concentrations of the drug and its metabolite were substantially higher despite decreasing plasma concentrations. As a high amount of celecoxib was found in the caecal contents, the increased tissue accumulation most likely resulted from direct uptake of celecoxib from the gut. These data demonstrate that incomplete small intestinal absorption of the poorly soluble drug celecoxib enables gut driven drug accumulation in caecal tissue, which is, most likely, critical for the role of this NSAID in the prevention of colorectal cancer.


Assuntos
Celecoxib/metabolismo , Celecoxib/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Inibidores de Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Adulto , Colo/diagnóstico por imagem , Colonoscopia/métodos , Feminino , Humanos , Masculino , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia , Adulto Jovem
11.
NPJ Biofilms Microbiomes ; 6(1): 9, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075981

RESUMO

Celecoxib has been effective in the prevention and treatment of chronic inflammatory disorders through inhibition of altered cyclooxygenase-2 (COX-2) pathways. Despite the benefits, continuous administration may increase risk of cardiovascular events. Understanding microbiome-drug-host interactions is fundamental for improving drug disposition and safety responses of colon-targeted formulations, but little information is available on the bidirectional interaction between individual microbiomes and celecoxib. Here, we conducted in vitro batch incubations of human faecal microbiota to obtain a mechanistic proof-of-concept of the short-term impact of celecoxib on activity and composition of colon bacterial communities. Celecoxib-exposed microbiota shifted metabolic activity and community composition, whereas total transcriptionally active bacterial population was not significantly changed. Butyrate production decreased by 50% in a donor-dependent manner, suggesting that celecoxib impacts in vitro fermentation. Microbiota-derived acetate has been associated with inhibition of cancer markers and our results suggest uptake of acetate for bacterial functions when celecoxib was supplied, which potentially favoured bacterial competition for acetyl-CoA. We further assessed whether colon microbiota modulates anti-inflammatory efficacy of celecoxib using a simplified inflammation model, and a novel in vitro simulation of the enterohepatic metabolism. Celecoxib was responsible for only 5% of the variance in bacterial community composition but celecoxib-exposed microbiota preserved barrier function and decreased concentrations of IL-8 and CXCL16 in a donor-dependent manner in our two models simulating gut inflammatory milieu. Our results suggest that celecoxib-microbiome-host interactions may not only elicit adaptations in community composition but also in microbiota functionality, and these may need to be considered for guaranteeing efficient COX-2 inhibition.


Assuntos
Bactérias/classificação , Butiratos/metabolismo , Celecoxib/farmacologia , Quimiocina CXCL16/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-6/metabolismo , Análise de Sequência de DNA/métodos , Adulto , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Células CACO-2 , Linhagem Celular Tumoral , DNA Bacteriano/genética , DNA Ribossômico/genética , Fezes/microbiologia , Feminino , Fermentação , Células HT29 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Estudo de Prova de Conceito , RNA Ribossômico 16S/genética , Células THP-1
12.
Arch Toxicol ; 93(10): 2895-2911, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31552476

RESUMO

Adaptive stress response pathways play a key role in the switch between adaptation and adversity, and are important in drug-induced liver injury. Previously, we have established an HepG2 fluorescent protein reporter platform to monitor adaptive stress response activation following drug treatment. HepG2 cells are often used in high-throughput primary toxicity screening, but metabolizing capacity in these cells is low and repeated dose toxicity testing inherently difficult. Here, we applied our bacterial artificial chromosome-based GFP reporter cell lines representing Nrf2 activation (Srxn1-GFP and NQO1-GFP), unfolded protein response (BiP-GFP and Chop-GFP), and DNA damage response (p21-GFP and Btg2-GFP) as long-term differentiated 3D liver-like spheroid cultures. All HepG2 GFP reporter lines differentiated into 3D spheroids similar to wild-type HepG2 cells. We systematically optimized the automated imaging and quantification of GFP reporter activity in individual spheroids using high-throughput confocal microscopy with a reference set of DILI compounds that activate these three stress response pathways at the transcriptional level in primary human hepatocytes. A panel of 33 compounds with established DILI liability was further tested in these six 3D GFP reporters in single 48 h treatment or 6 day daily repeated treatment. Strongest stress response activation was observed after 6-day repeated treatment, with the BiP and Srxn1-GFP reporters being most responsive and identified particular severe-DILI-onset compounds. Compounds that showed no GFP reporter activation in two-dimensional (2D) monolayer demonstrated GFP reporter stress response activation in 3D spheroids. Our data indicate that the application of BAC-GFP HepG2 cellular stress reporters in differentiated 3D spheroids is a promising strategy for mechanism-based identification of compounds with liability for DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Diferenciação Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Dano ao DNA/efeitos dos fármacos , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Células Hep G2 , Hepatócitos/patologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Microscopia Confocal/métodos , Esferoides Celulares/patologia , Estresse Fisiológico/efeitos dos fármacos
13.
Curr Protoc Toxicol ; 80(1): e76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31058461

RESUMO

Using galactose instead of glucose in the culture medium of hepatoma cell lines, such as HepG2 cells, has been utilized for a decade to unmask the mitochondrial liability of chemical compounds. A modified glucose-galactose assay on HepG2 cells, reducing the experimental period for screening of mitochondrial toxicity to 2 to 4 hr, has been previously reported. HepaRG cells are one of the few cell lines that retain some of the important characteristics of human hepatocytes, offering advantages of working with a cell line, therefore, are considered an alternative for HepG2 cells in drug toxicity screening. A method is described here using HepaRG cells in an acute metabolic switch assay utilizing specific glucose/galactose media, a combined ATP-protein-LDH assay measuring three endpoints from one 96-well plate, and a criteria to label a compound as a mitochondrial toxin. © 2019 by John Wiley & Sons, Inc.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Meios de Cultura/química , Galactose/metabolismo , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas , Bioensaio , Linhagem Celular , Hepatócitos/metabolismo , Humanos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo
14.
Drug Metab Dispos ; 47(5): 453-464, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787101

RESUMO

In this phase 1 study, the absolute bioavailability and absorption, metabolism, and excretion (AME) of apalutamide, a competitive inhibitor of the androgen receptor, were evaluated in 12 healthy men. Subjects received 240 mg of apalutamide orally plus a 15-minute intravenous infusion of 100 µg of apalutamide containing 9.25 kBq (250 nCi) of 14C-apalutamide (2 hours postdose) for absolute bioavailability assessment or plus one 400-µg capsule containing 37 kBq (1000 nCi) of 14C-apalutamide for AME assessment. Content of 14C and metabolite profiling for whole blood, plasma, urine, feces, and expired air samples were analyzed using accelerator mass spectrometry. Apalutamide absolute oral bioavailability was ≈100%. After oral administration, apalutamide, its N-desmethyl metabolite (M3), and an inactive carboxylic acid metabolite (M4) accounted for most 14C in plasma (45%, 44%, and 3%, respectively). Apalutamide elimination was slow, with a mean plasma half-life of 151-178 hours. The mean cumulative recovery of total 14C over 70 days postdose was 64.6% in urine and 24.3% in feces. The urinary excretion of apalutamide, M3, and M4 was 1.2%, 2.7%, and 31.1% of dose, respectively. Fecal excretion of apalutamide, M3, and M4 was 1.5%, 2.0%, and 2.4% of dose, respectively. Seventeen apalutamide metabolites and six main metabolic clearance pathways were identified. In vitro studies confirmed CYP2C8 and CYP3A4 roles in apalutamide metabolism.


Assuntos
Hepatócitos/metabolismo , Tioidantoínas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Disponibilidade Biológica , Líquidos Corporais/metabolismo , Radioisótopos de Carbono/metabolismo , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fezes/química , Meia-Vida , Humanos , Infusões Intravenosas/métodos , Masculino , Taxa de Depuração Metabólica/fisiologia , Pessoa de Meia-Idade
15.
Toxicol Sci ; 168(2): 597-609, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649540

RESUMO

Telaprevir, a protease inhibitor, was used alongside PEGylated interferon-α and ribavirin to treat hepatitis C viral infections. The triple regimen proved successful; however, the appearance of severe skin reactions alongside competition from newer drugs restricted its use. Skin reactions presented with a delayed onset indicative of a T-cell mediated reaction. Thus, the aim of this study was to investigate whether telaprevir and/or its diastereomer, which is generated in humans, activates T-cells. Telaprevir in its S-configured therapeutic form and the R-diastereomer were cultured directly with peripheral blood mononuclear cells from healthy donors prior to the generation of T-cell clones by serial dilution. Drug-specific CD4+ and CD8+ T-cell clones responsive to telaprevir and the R-diastereomer were generated and characterized in terms of phenotype and function. The clones proliferated with telaprevir and diastereomer concentrations of 5-20 µM and secreted IFN-γ, IL-13, and granzyme B. In contrast, the telaprevir M11 metabolite did not stimulate T-cells. The CD8+ T-cell response was MHC I-restricted and dependent on the presence of soluble drug. Flow cytometric analysis showed that clones expressed chemokine receptors CCR4 (skin homing) and CXCR3 (migration to peripheral tissue) and 1 of 3 distinct TCR Vßs; TCR Vß 2, 5.1, or 22. These data show the propensity of both R- and S-forms of telaprevir to generate skin-homing cytotoxic T-cells that may induce the adverse reactions observed in human patients.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Células Clonais/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Oligopeptídeos/toxicidade , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Técnicas de Cultura de Células , Células Cultivadas , Células Clonais/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Estereoisomerismo
16.
Toxicol In Vitro ; 53: 136-147, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30096366

RESUMO

The importance of mitochondrial toxicity in drug-induced liver injury is well established. The bioenergetic phenotype of the HepaRG cell line was defined in order to assess their suitability as a model of mitochondrial hepatotoxicity. Bioenergetic phenotyping categorised the HepaRG cells as less metabolically active when measured beside the more energetic HepG2 cells. However, inhibition of mitochondrial ATP synthase induced an increase in glycolytic activity of both HepaRG and HepG2 cells suggesting an active Crabtree Effect in both cell lines. The suitability of HepaRG cells for the acute metabolic modification assay as a screen for mitotoxicity was confirmed using a panel of compounds, including both positive and negative mitotoxic compounds. Seahorse respirometry studies demonstrated that a statistically significant decrease in spare respiratory capacity is the first indication of mitochondrial dysfunction. Furthermore, based upon comparing changes in respiratory parameters to those of the positive controls, rotenone and carbonyl cyanide m-chlorophenyl hydrazone, compounds were categorised into two mechanistic groups; inhibitors or uncouplers of the electron transport chain. Overall, the findings from this study have demonstrated that HepaRG cells, despite having different resting bioenergetic phenotype to HepG2 cells are a suitable model to detect drug-induced mitochondrial toxicity with similar detection rates to HepG2 cells.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metabolismo Energético , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Humanos , L-Lactato Desidrogenase/metabolismo
17.
Leuk Lymphoma ; 59(12): 2888-2895, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29846137

RESUMO

This was an open-label, multicenter, phase-1 study to evaluate the drug interaction between steady-state ibrutinib and moderate (erythromycin) and strong (voriconazole) CYP3A inhibitors in patients with B-cell malignancies and to confirm dosing recommendations. During cycle 1, patients received oral ibrutinib 560 mg qd alone (Days 1-4 and 14-18), and ibrutinib 140 mg (Days 5-13; 19-27) plus erythromycin 500 mg tid (Days 5-11) and voriconazole 200 mg bid (Days 19-25). Twenty-six patients (median [range] age: 64.5 [50-88] years) were enrolled. Geometric mean ratio (90% confidence intervals) after co-administration of ibrutinib 140 mg with erythromycin and voriconazole was 74.7 (53.97-103.51) and 143.3 (107.77-190.42), respectively, versus ibrutinib 560 mg alone. The most common (≥20%) adverse events were diarrhea (27%) and neutropenia (23%). The results demonstrate that ibrutinib 140 mg with voriconazole or erythromycin provides exposure within the clinical range for patients with B-cell malignancies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linfócitos B/patologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/uso terapêutico , Diarreia/induzido quimicamente , Diarreia/epidemiologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Eritromicina/farmacologia , Eritromicina/uso terapêutico , Feminino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neutropenia/induzido quimicamente , Neutropenia/epidemiologia , Piperidinas , Polimorfismo de Nucleotídeo Único , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Voriconazol/farmacologia , Voriconazol/uso terapêutico
18.
Clin Pharmacokinet ; 57(12): 1559-1570, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29663259

RESUMO

INTRODUCTION: Coproporphyrin (CP) I and III have recently been proposed as endogenous clinical biomarkers to predict organic anion-transporting polypeptide 1B (OATP1B)-mediated drug-drug interactions (DDIs). In the present study, we first investigated the in vitro selectivity of CPI and CPIII towards drug uptake and efflux transporters. We then assessed the in vivo biomarker sensitivity towards OATP1B inhibition. METHODS: To assess transporter selectivity, incubations with CPI and CPIII were performed in vitro, using single transporter-expressing and control systems. Furthermore, CPI and CPIII plasma concentrations were determined from participants of three independent clinical trials who were administered with either a strong, moderate, or mild clinical OATP1B inhibitor. RESULTS: Our results show that CPI and CPIII are substrates of OATP1B1, OATP1B3, the multidrug resistance-associated protein (MRP) 2, and MRP3. No substrate interaction was shown for other prominent drug transporters that have been associated with clinical DDIs. Results from clinical studies demonstrated that changes in CPI and CPIII plasma levels were predictive for moderate (two to threefold area under the concentration-time curve [AUC] increase) and strong (≥ fivefold increases) clinical OATP1B inhibition. Furthermore, CPI, but not CPIII, concentration changes were predictive for a mild clinically observed DDI where CPI AUC increases of 1.4-fold were comparable with those observed for pitavastatin as victim drug (AUC increases of 1.5-fold). CONCLUSION: Our results demonstrate the selectivity of CPI and CPIII towards the OATP1B/MRP pathway, and the herein reported data further underline the potential of CPI and CPIII as selective and sensitive clinical biomarkers to quantify OATP1B-mediated DDIs.


Assuntos
Coproporfirinas/sangue , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/antagonistas & inibidores , Área Sob a Curva , Biomarcadores/sangue , Interações Medicamentosas , Humanos , Técnicas In Vitro , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Quinolinas/farmacocinética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-29241088

RESUMO

Coproporphyrins are proposed as endogenous biomarkers of hepatic Organic Anion Transporting Polypeptide (OATP)1B functional activity. In this study, a new sample extraction method based on a mixed-mode anion exchange sorbent (SPE clean-up using Oasis 30mg Max 96 well plates) was developed for absolute quantification of coproporphyrin I and III (CP-I and CP-III) in human plasma. Chromatographic separation was performed with an Ace Excel 2 C18 PFP, 3µm, 2.1×150mm, maintained at 60°C. A 10mM ammonium formate containing 0.1% HCOOH and acetonitrile (100%) was used as mobile phase A and B, respectively. Mass transition, m/z 655.3→596.3 was selected to monitor CP-I and CP-III, while m/z 659.3→600.3 transition was used for the stable isotope labelled internal standard. Optimization of the liquid chromatography tandem mass spectrometry method ensured a lower limit of quantification (LLOQ) of 20pg/mL. Both CP-I and CP-III had extraction recoveries of 70%. The calibration range was 0.02-100ng/mL for both CP-I and CP-III, yielding calibration curves with correlation coefficients greater than 0.988. Inter day precision (CV<9%) and accuracy (84.3-103.9%) complied with the recommendation of the European Bioanalytical Forum. The optimized method was used to analyse plasma samples originating from three independent clinical studies. Obtained CP-I and CP-III plasma baseline levels in healthy volunteers were in good agreement with previously published data. Moreover, CP-I and CP-III plasma levels in human subjects dosed with a clinically confirmed OATP inhibitor were significantly increased compared to their baseline levels. These data demonstrate the potential of CP-I and CP-III as endogenous biomarkers to predict the drug-drug interaction (DDI) related to hepatic OATP1B inhibition. Stability of CP-I and CP-III in plasma and solvents under different processing and storage conditions was also evaluated.


Assuntos
Biomarcadores/sangue , Cromatografia Líquida/métodos , Coproporfirinas/sangue , Espectrometria de Massas em Tandem/métodos , Biomarcadores/metabolismo , Coproporfirinas/metabolismo , Interações Medicamentosas , Humanos , Limite de Detecção , Modelos Lineares , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Reprodutibilidade dos Testes
20.
Toxicol Sci ; 163(2): 374-384, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28206647

RESUMO

TAK-875, a GPR40 agonist, was withdrawn from Phase III clinical trials due to drug-induced liver injury (DILI). Mechanistic studies were conducted to identify potential DILI hazards (covalent binding burden (CVB), hepatic transporter inhibition, mitochondrial toxicity, and liver toxicity in rats) associated with TAK-875. Treatment of hepatocytes with radiolabeled TAK-875 resulted in a CVB of 2.0 mg/day, which is above the threshold of 1 mg/day considered to be a risk for DILI. Covalent binding to hepatocytes was due to formation of a reactive acyl glucuronide (AG) and, possibly, an acyl-CoA thioester intermediate. Formation of TAK-875AG in hepatocytes and/or in vivo was in the order of non-rodents > human (in vitro only) > rat. These data suggest that non-rodents, and presumably humans, form TAK-875AG more efficiently than rats, and that AG-mediated toxicities in rats may only occur at high doses. TAK-875 (1000 mg/kg/day) formed significant amounts of AG metabolite (≤32.7 µM) in rat liver that was associated with increases in ALT (×4), bilirubin (×9), and bile acids (×3.4), and microscopic findings of hepatocellular hypertrophy and single cell necrosis. TAK-875 and TAK-875AG had similar potencies (within 3-fold) for human multi-drug resistant associated protein 2/4 (MRP2/4) and bile salt export pump, but TAK-875AG was exceptionally potent against MRP3 (0.21 µM). Inhibition of MRPs may contribute to liver accumulation of TAK-875AG. TAK-875 also inhibited mitochondrial respiration in HepG2 cells, and mitochondrial Complex 1 and 2 activities in isolated rat mitochondria. In summary, formation of TAK-875AG, and possibly TAK-875CoA in hepatocytes, coupled with inhibition of hepatic transporters and mitochondrial respiration may be key contributors to TAK-875-mediated DILI.


Assuntos
Benzofuranos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Sulfonas/toxicidade , Animais , Benzofuranos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cães , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Macaca fascicularis , Mitocôndrias Hepáticas/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transportadores de Ânions Orgânicos/genética , Consumo de Oxigênio/efeitos dos fármacos , Ligação Proteica , Ratos , Especificidade da Espécie , Sulfonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA