Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Sci Immunol ; 9(97): eadn6509, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028827

RESUMO

Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.


Assuntos
Antígenos CD5 , Imunoterapia Adotiva , Linfócitos T , Animais , Imunoterapia Adotiva/métodos , Antígenos CD5/imunologia , Camundongos , Humanos , Linfócitos T/imunologia , Linfócitos T/transplante , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Feminino
2.
Methods Cell Biol ; 183: 303-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548415

RESUMO

This chapter introduces four commonly used in vitro chimeric antigen receptor (CAR)-T cell cytotoxicity assays (lactate dehydrogenase release assay, 51Cr release assay, IncuCyte live cell killing assay, and xCELLigence real-time analysis) and provides a detailed protocol for xCELLigence real-time analysis. Focusing on in vitro assays, this chapter starts with explaining the mechanisms and discussing the utilization of each assay to quantify T-cell-induced cytotoxicity. Due to the high-throughput quantification and straightforward workflow of xCELLigence real-time analysis, a protocol entailing reagents and equipment, a 3-day step-by-step procedure, and instructions for data analysis are provided.


Assuntos
Apoptose , Linfócitos T , Linhagem Celular Tumoral
3.
Mol Carcinog ; 62(9): 1428-1443, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401875

RESUMO

Therapy using anti-PD-1 immune checkpoint inhibitors (ICI) has revolutionized the treatment of many cancers including head and neck squamous cell carcinomas (HNSCC), but only a fraction of patients respond. To better understand the molecular mechanisms driving resistance, we performed extensive analysis of plasma and tumor tissues before and after a 4-week neoadjuvant trial in which HNSCC patients were treated with the anti-PD-1 inhibitor, nivolumab. Luminex cytokine analysis of patient plasma demonstrated that HPVpos nonresponders displayed high levels of the proinflammatory chemokine, interleukin-8 (IL-8), which decreased after ICI treatment, but remained higher than responders. miRNAseq analysis of tetraspanin-enriched small extracellular vesicles (sEV) purified from plasma of HPVpos nonresponders demonstrated significantly lower levels of seven miRNAs that target IL-8 including miR-146a. Levels of the pro-survival oncoprotein Dsg2, which has been to down-regulate miR-146a, are elevated with HPVpos tumors displaying higher levels than HPVneg tumors. Dsg2 levels decrease significantly following ICI in responders but not in nonresponders. In cultured HPVpos cells, restoration of miR-146a by forced expression or treatment with miR-146a-loaded sEV, reduced IL-8 level, blocked cell cycle progression, and promoted cell death. These findings identify Dsg2, miR-146a, and IL-8 as potential biomarkers for ICI response and suggest that the Dsg2/miR-146a/IL-8 signaling axis negatively impacts ICI treatment outcomes and could be targeted to improve ICI responsiveness in HPVpos HNSCC patients.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , MicroRNAs , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Interleucina-8/genética , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Terapia Neoadjuvante , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Vesículas Extracelulares/metabolismo
4.
Immunotherapy ; 14(17): 1393-1405, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36468417

RESUMO

Pancreatic cancer is one of the most lethal cancers, due to its uniquely aggressive behavior and resistance to therapy. The tumor microenvironment of pancreatic cancer is immunosuppressive, and attempts at utilizing immunotherapies have been unsuccessful. Radiation therapy (RT) results in immune activation and antigen presentation in other cancers, but in pancreatic cancer has had limited success in stimulating immune responses. RT activates common pathways of fibrosis and chronic inflammation seen in pancreatic cancer, resulting in immune suppression. Here we describe the pancreatic tumor microenvironment with regard to fibrosis, myeloid and lymphoid cells, and the impact of RT. We also describe strategies of targeting these pathways that have promise to improve outcomes by harnessing the cytotoxic and immune-activating aspects of RT.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Neoplasias Pancreáticas/radioterapia , Imunoterapia , Fibrose , Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas
5.
Expert Rev Clin Pharmacol ; 15(11): 1317-1326, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36259230

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Although overall survival for CRC patients has improved with earlier screening, survival continues to vary substantially across stages. Also, while the introduction of targeted therapies, including VEGF and EGFR inhibitors, has contributed to improving survival, better tools are needed to optimize patient selection and maximize therapeutic benefits. Emerging biomarkers can be used to guide pharmacologic decision-making, as well as monitor treatment response, clarify the need for adjuvant therapies, and indicate early signs of recurrence. This is a narrative review examining the current and evolving use of predictive and prognostic biomarkers in colorectal cancer. AREAS COVERED: Areas covered include mutations of the MAPK (KRAS, BRAF) and HER2 pathways and their impacts on treatment decisions. In addition, novel methods for assessing tumor mutations and tracking treatment responses are examined. EXPERT OPINION: The standard of care pathway for staging, and treatment selection and surveillance, of CRC will expand to include novel biomarkers in the next 5 years. It is anticipated that these new biomarkers will assist in decision-making regarding selection of targeted therapies and, importantly, in risk stratification for treatment decisions in patients at high risk for recurrence.


Assuntos
Neoplasias Colorretais , Farmacologia Clínica , Humanos , Prognóstico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
6.
Per Med ; 19(5): 457-472, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35920071

RESUMO

Colorectal cancer remains a major cause of mortality in the USA, despite advances in prevention and screening. Existing therapies focus primarily on generic treatment such as surgical intervention and chemotherapy, depending on disease severity. As personalized medicine and targeted molecular oncology continue to develop as promising treatment avenues, there has emerged a need for effective targets and biomarkers of colorectal cancer. The transmembrane receptor guanylyl cyclase C (GUCY2C) regulates intestinal homeostasis and has emerged as a tumor suppressor. Further, it is universally expressed in advanced metastatic colorectal tumors, as well as other cancer types that arise through intestinal metaplasia. In this context, GUCY2C satisfies many characteristics of a compelling target and biomarker for gastrointestinal malignancies.


Colorectal cancer is a leading cause of death in the USA. In recent years, there has been a shift in the field of oncology from generic treatments, such as surgery and chemotherapy, to personalized molecular therapies, which focus on targeting specific attributes of each patient's unique cancer. Guanylyl cyclase C is a receptor expressed in the intestinal tract, where it regulates fluid secretion and prevents tumor formation. Beyond its function in the healthy intestine, it is expressed in colorectal tumors, and other types of cancer, where it regulates transformation. Therefore, guanylyl cyclase C can serve as a useful target in cancer for prevention and therapy, as well as a marker for tumor cell detection.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Receptores de Enterotoxina
7.
NPJ Vaccines ; 7(1): 61, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739202

RESUMO

Strategies to augment immunity to self/neoantigens expressed by cancers are urgently needed to expand the proportion of patients benefiting from immunotherapy, particularly for GI cancers where only a fraction of patients respond to immunotherapies. However, current vaccine strategies are limited by poor immunogenicity, pre-existing vector-specific immunity, and vaccine-induced vector-specific immunity. Here, we examined a prime-boost strategy using a chimeric adenoviral vector (Ad5.F35) that resists pre-existing immunity followed by recombinant Listeria monocytogenes (Lm) to amplify immunity to the GI cancer antigen GUCY2C. This previously unexplored combination enhanced the quantity, avidity, polyfunctionality, and antitumor efficacy of GUCY2C-specific effector CD8+ T cells, without toxicity in any tissue, including GUCY2C-expressing intestines and brain. Importantly, this combination was partially resistant to pre-existing immunity to Ad5 which is endemic in human populations and vector-specific immunity did not limit the ability of multiple Lm administrations to repeatedly enhance GUCY2C-specific responses. Broadly, these findings suggest that cancer patient immunizations targeting self/neoantigens, as well as immunizations for difficult infectious diseases (HIV, malaria, etc), may be most successful using a combination of Ad5.F35-based priming, followed by Lm-based boosting. More specifically, Lm-GUCY2C may be utilized to amplify GUCY2C-specific immunity in patients receiving adenovirus-based GUCY2C vaccines currently in clinical trials to prevent or treat recurrent GI cancer.

8.
Immunotherapy ; 14(11): 885-902, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694998

RESUMO

In luminal gastrointestinal tumors, immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L1 and CTLA-4 have been investigated in multiple settings. The indications for these drugs are primarily dependent on specific biomarkers that imply immunogenicity: overexpression of PD-L1, tumor mutational burden, loss of mismatch repair proteins (dMMR) and/or high microsatellite instability status. Although these markers can be both predictive and prognostic, there is variability in how they are measured and used to guide therapies. Moreover, the use of ICIs can be further refined with a better understanding of the tumor microenvironment and interactions with other available therapies. The purpose of this review is to characterize luminal gastrointestinal tumors' responses to ICIs considering known predictive biomarkers and discuss emerging therapeutic approaches using ICIs.


Immune checkpoint inhibitors (ICIs) are medications that help the natural immune system fight cancer cells, preventing their growth. In tumors of the gastrointestinal tract, mounting research has shown that ICIs are useful in treatment regimens. However, this depends on certain characteristics of individual cancers, such as how many mutations they have, if they are missing certain enzymes and other considerations. ICIs can also be paired with standard ­ and nonstandard ­ treatments like chemotherapy, radiation and other targeted therapy to increase their effectiveness against cancer. This article discusses how ICIs are used in gastrointestinal tract cancers according to the available evidence in the medical literature, and it explores the directions of the research on the forefront of immunotherapy.


Assuntos
Neoplasias Gastrointestinais , Instabilidade de Microssatélites , Antígeno B7-H1 , Biomarcadores Tumorais/metabolismo , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral
9.
Front Immunol ; 13: 855759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355987

RESUMO

The Gram-positive bacterium Listeria monocytogenes (Lm) is an emerging platform for cancer immunotherapy. To date, over 30 clinical trials have been initiated testing Lm cancer vaccines across a wide variety of cancers, including lung, cervical, colorectal, and pancreatic. Here, we assessed the immunogenicity of an Lm vaccine against the colorectal tumor antigen GUCY2C (Lm-GUCY2C). Surprisingly, Lm-GUCY2C vaccination did not prime naïve GUCY2C-specific CD8+ T-cell responses towards the dominant H-2Kd-restricted epitope, GUCY2C254-262. However, Lm-GUCY2C produced robust CD8+ T-cell responses towards Lm-derived peptides suggesting that GUCY2C254-262 peptide may be subdominant to Lm-derived peptides. Indeed, incorporating immunogenic Lm peptides into an adenovirus-based GUCY2C vaccine previously shown to induce robust GUCY2C254-262 immunity completely suppressed GUCY2C254-262 responses. Comparison of immunogenic Lm-derived peptides to GUCY2C254-262 revealed that Lm-derived peptides form highly stable peptide-MHC complexes with H-2Kd compared to GUCY2C254-262 peptide. Moreover, amino acid substitution at a critical anchoring residue for H-2Kd binding, producing GUCY2CF255Y, significantly improved stability with H-2Kd and rescued GUCY2C254-262 immunogenicity in the context of Lm vaccination. Collectively, these studies suggest that Lm antigens may compete with and suppress the immunogenicity of target vaccine antigens and that use of altered peptide ligands with enhanced peptide-MHC stability may be necessary to elicit robust immune responses. These studies suggest that optimizing target antigen competitiveness with Lm antigens or alternative immunization regimen strategies, such as prime-boost, may be required to maximize the clinical utility of Lm-based vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , Listeria monocytogenes , Listeria , Epitopos , Humanos , Epitopos Imunodominantes , Peptídeos , Receptores de Enterotoxina
10.
Nat Commun ; 13(1): 1381, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296667

RESUMO

Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.


Assuntos
Melanoma , Neoplasias Cutâneas , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral
11.
Expert Opin Ther Targets ; 26(3): 207-216, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35129035

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United States. There have been improvements in screening, and therefore overall survival, but patients continue to present at late stages when minimal treatment options are available to them. While some targeted therapies have been introduced, their application is limited by patient-specific tumor characteristics. Additional targets for CRC in patients who present at a late stage, or who experience tumor relapse, need to be identified to continue to improve patient outcomes. AREAS COVERED: This review focuses on emerging pathways and drug targets for the treatment of colorectal cancer. The shift to the cancer stem cell model and potential targets involving Wnt, NF-κB, phosphodiesterases, RAS, and guanylyl cyclase C, are discussed. The current utility of checkpoint inhibitors and evolving immunological options are examined. EXPERT OPINION: Surgery and current systemic cytotoxic therapies are inadequate to appropriately treat the full spectrum of CRC, especially in those patients who present with metastatic or treatment-refractory disease. In addition to the identification of new, more generalizable targets, additional focus is being placed on novel administrations. Immuno-oncologic options and stem cell-targeting therapies for mCRC will become available to patients and may increase survival.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Células-Tronco Neoplásicas , Preparações Farmacêuticas
12.
Cancer Biol Ther ; 23(1): 127-133, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35129050

RESUMO

The immune system is capable of remarkably potent and specific efficacy against infectious diseases. For decades, investigators sought to leverage those characteristics to create immune-based therapies (immunotherapy) that might be far more effective and less toxic than conventional chemotherapy and radiation therapy for cancer. Those studies revealed many factors and mechanisms underlying the success or failure of cancer immunotherapy, leading to synthetic biology approaches, including CAR-T cell therapy. In this approach, patient T cells are genetically modified to express a chimeric antigen receptor (CAR) that converts T cells of any specificity into tumor-specific T cells that can be expanded to large numbers and readministered to the patient to eliminate cancer cells, including bulky metastatic disease. This approach has been most successful against hematologic cancers, resulting in five FDA approvals to date. Here, we discuss some of the most promising attempts to apply this technology to cancers of the gastrointestinal tract.


Assuntos
Neoplasias Gastrointestinais , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/terapia , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
13.
Methods Cell Biol ; 167: 81-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153000

RESUMO

This chapter describes the most common method for evaluating cytotoxicity of chimeric antigen receptor (CAR) T cells, the xCELLigence real-time cell analysis (RTCA) platform (Agilent Technologies, Inc., Santa Clara, CA). Though there are a variety of assays used to evaluate conventional and engineered T cell cytotoxicity, the benefit of the xCELLigence platform is the depth of real-time data collected. This chapter begins by providing information on the conceptual basis underlying the xCELLigence assay, followed by a detailed protocol for the application of this assay to evaluate your own CAR-T cells, as well as specific insight and helpful tips for assay design, usage, and data analysis. Application of the information and methods discussed within this chapter will provide a greater understanding for evaluating cytotoxicity of CAR-T cells using this in vitro model system.


Assuntos
Linfócitos T Citotóxicos , Linhagem Celular Tumoral , Impedância Elétrica
14.
Cell Mol Gastroenterol Hepatol ; 13(4): 1276-1296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34954189

RESUMO

BACKGROUND & AIMS: Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic ß-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by ß-catenin/TCF signaling. METHODS: We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of ß-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS: RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of ß-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant ß-catenin/TCF signaling. CONCLUSIONS: These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by ß-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.


Assuntos
Neoplasias Colorretais , beta Catenina , Carcinogênese/genética , Cateninas/genética , Cateninas/metabolismo , Neoplasias Colorretais/patologia , Humanos , Ligantes , Região de Controle de Locus Gênico , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
J Invest Dermatol ; 142(4): 1085-1093, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34597610

RESUMO

Pseudoxanthoma elasticum, a heritable multisystem ectopic mineralization disorder, is caused by inactivating mutations in the ABCC6 gene. The encoded protein, ABCC6, a transmembrane transporter, has a specialized efflux function in hepatocytes by contributing to plasma levels of inorganic pyrophosphate, a potent inhibitor of mineralization in soft connective tissues. Reduced plasma inorganic pyrophosphate levels underlie the ectopic mineralization in pseudoxanthoma elasticum. In this study, we characterized the pathogenicity of three human ABCC6 missense variants using an adenovirus-mediated liver-specific ABCC6 transgene expression system in an Abcc6-/- mouse model of pseudoxanthoma elasticum. Variants p.L420V and p.R1064W were found benign because they had abundance and plasma membrane localization in hepatocytes similar to the wild-type human ABCC6 transgene, normalized plasma inorganic pyrophosphate levels, and prevented mineralization in the dermal sheath of vibrissae in muzzle skin, a phenotypic hallmark in the Abcc6-/- mice. In contrast, p.S400F was shown to be pathogenic because it failed to normalize plasma inorganic pyrophosphate levels and had no effect on ectopic mineralization despite its normal expression and proper localization in hepatocytes. These results showed that adenovirus-mediated hepatic ABCC6 expression in Abcc6-/- mice can provide a model system to effectively elucidate the multifaceted functional consequences of human ABCC6 missense variants identified in patients with pseudoxanthoma elasticum.


Assuntos
Calcinose , Pseudoxantoma Elástico , Adenoviridae/genética , Animais , Calcinose/patologia , Difosfatos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação de Sentido Incorreto , Pseudoxantoma Elástico/patologia , Pele/patologia
16.
Vaccines (Basel) ; 9(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34835229

RESUMO

In this editorial, we highlight articles published in this Special Issue of Vaccines on "Cancer Vaccines and Immunotherapy for Tumor Prevention and Treatment", recent developments in the field of cancer vaccines, and the potential for immunotherapeutic combinations in cancer care. This issue covers important developments and progress being made in the cancer vaccine field and possible future directions for exploring new technologies to produce optimal immune responses against cancer and expand the arena of prophylactic and therapeutic cancer vaccines for the treatment of this deadly disease.

17.
Expert Rev Precis Med Drug Dev ; 6(2): 117-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34027103

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. AREAS COVERED: We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. EXPERT OPINION: The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.

18.
Expert Opin Biol Ther ; 21(10): 1335-1345, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33977849

RESUMO

Introduction: Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and is the second leading cause of cancer-related death in the United States. Despite advances in early detection, ~25% of patients are late stage, and treated patients have <12% chance of survival after five years. Tumor relapse and metastasis are the main causes of patient death. Cancer stem cells (CSCs) are a rare population of cancer cells characterized by properties of self-renewal, chemo- and radio-resistance, tumorigenicity, and high plasticity. These qualities make CSCs particularly important for metastasic seeding, DNA-damage resistance, and tumor repopulating.Areas Covered: The following review article focuses on the role of CRC-SCs in tumor initiation, metastasis, drug resistance, and tumor relapse, as well as on potential therapeutic options for targeting CSCs.Expert Opinion: Current studies are underway to better isolate and discriminate CSCs from normal stem cells and to produce CSC-targeted therapeutics. The intestinal receptor, guanylate cyclase C (GUCY2C) could potentially provide a unique therapeutic target for both non-stem cells and CSCs alike in colorectal cancer through immunotherapies. Indeed, immunotherapies targeting CSCs have the potential to break the treatment-recurrence cycle in the management of advanced malignancies.


Assuntos
Neoplasias Colorretais , Recidiva Local de Neoplasia , Neoplasias Colorretais/tratamento farmacológico , Humanos , Imunoterapia , Terapia de Alvo Molecular , Recidiva Local de Neoplasia/terapia , Células-Tronco Neoplásicas , Receptores de Enterotoxina
19.
Expert Opin Ther Targets ; 25(5): 335-346, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34056991

RESUMO

INTRODUCTION: Gastrointestinal (GI) cancers account for the second leading cause of cancer-related deaths in the United States. Guanylyl cyclase C (GUCY2C) is an intestinal signaling system that regulates intestinal fluid and electrolyte secretion as well as intestinal homeostasis. In recent years, it has emerged as a promising target for chemoprevention and therapy for GI malignancies. AREAS COVERED: The loss of GUCY2C signaling early in colorectal tumorigenesis suggests it could have a significant impact on tumor initiation. Recent studies highlight the importance of GUCY2C signaling in preventing colorectal tumorigenesis using agents such as linaclotide, plecanatide, and sildenafil. Furthermore, GUCY2C is a novel target for immunotherapy and a diagnostic marker for primary and metastatic diseases. EXPERT OPINION: There is an unmet need for prevention and therapy in GI cancers. In that context, GUCY2C is a promising target for prevention, although the precise mechanisms by which GUCY2C signaling affects tumorigenesis remain to be defined. Furthermore, clinical trials are exploring its role as an immunotherapeutic target for vaccines to prevent metastatic disease. Indeed, GUCY2C is an emerging target across the disease continuum from chemoprevention, to diagnostic management, through the treatment and prevention of metastatic diseases.


Assuntos
Neoplasias Gastrointestinais/terapia , Terapia de Alvo Molecular , Receptores de Enterotoxina/metabolismo , Animais , Fármacos Gastrointestinais/farmacologia , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/prevenção & controle , Humanos , Imunoterapia/métodos , Transdução de Sinais/efeitos dos fármacos
20.
Immunotherapy ; 13(7): 561-564, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33724866

RESUMO

Tweetable abstract US FDA-approved immune checkpoint inhibitors have limited efficacy for gastrointestinal cancers such as #colorectalcancer and #pancreaticcancer. Could combinations with experimental cancer 'vaccines' be the key?


Assuntos
Vacinas Anticâncer/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA