Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 35(3-4): 59-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35867597

RESUMO

OBJECTIVE: Inhalation of ozone activates central sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal stress axes. While airway neural networks are known to communicate noxious stimuli to higher brain centers, it is not known to what extent responses generated from pulmonary airways contribute to neuroendocrine activation. MATERIALS AND METHODS: Unlike inhalational exposures that involve the entire respiratory tract, we employed intratracheal (IT) instillations to expose only pulmonary airways to either soluble metal-rich residual oil fly ash (ROFA) or compressor-generated diesel exhaust particles (C-DEP). Male Wistar-Kyoto rats (12-13 weeks) were IT instilled with either saline, C-DEP or ROFA (5 mg/kg) and necropsied at 4 or 24 hr to assess temporal effects. RESULTS: IT-instillation of particulate matter (PM) induced hyperglycemia as early as 30-min and glucose intolerance when measured at 2 hr post-exposure. We observed PM- and time-specific effects on markers of pulmonary injury/inflammation (ROFA>C-DEP; 24 hr>4hr) as corroborated by increases in lavage fluid injury markers, neutrophils (ROFA>C-DEP), and lymphocytes (ROFA). Increases in lavage fluid pro-inflammatory cytokines differed between C-DEP and ROFA in that C-DEP caused larger increases in TNF-α whereas ROFA caused larger increases in IL-6. No increases in circulating cytokines occurred. At 4 hr, PM impacts on neuroendocrine activation were observed through depletion of circulating leukocytes, increases in adrenaline (ROFA), and decreases in thyroid-stimulating-hormone, T3, prolactin, luteinizing-hormone, and testosterone. C-DEP and ROFA both increased lung expression of genes involved in acute stress and inflammatory processes. Moreover, small increases occurred in hypothalamic Fkbp5, a glucocorticoid-sensitive gene. CONCLUSION: Respiratory alterations differed between C-DEP and ROFA, with ROFA inducing greater overall lung injury/inflammation; however, both PM induced a similar degree of neuroendocrine activation. These findings demonstrate neuroendocrine activation after pulmonary-only PM exposure, and suggest the involvement of pituitary- and adrenal-derived hormones.


Assuntos
Poluentes Atmosféricos , Lesão Pulmonar , Ratos , Animais , Masculino , Material Particulado/toxicidade , Material Particulado/metabolismo , Poluentes Atmosféricos/toxicidade , Líquido da Lavagem Broncoalveolar , Ratos Sprague-Dawley , Ratos Endogâmicos WKY , Pulmão , Cinza de Carvão , Lesão Pulmonar/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Hormônios/metabolismo , Hormônios/farmacologia
2.
Toxicol Sci ; 181(2): 229-245, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33662111

RESUMO

Air pollution has been associated with metabolic diseases and hepatic steatosis-like changes. We have shown that ozone alters liver gene expression for metabolic processes through neuroendocrine activation. This study aimed to further characterize ozone-induced changes and to determine the impact of hepatic vagotomy (HV) which reduces parasympathetic influence. Twelve-week-old male Wistar-Kyoto rats underwent HV or sham surgery 5-6 days before air or ozone exposure (0 or 1 ppm; 4 h/day for 1 or 2 days). Ozone-induced lung injury, hyperglycemia, glucose intolerance, and increases in circulating cholesterol, triglycerides, and leptin were similar in rats with HV and sham surgery. However, decreases in circulating insulin and increased HDL and LDL were observed only in ozone-exposed HV rats. Ozone exposure resulted in changed liver gene expression in both sham and HV rats (sham > HV), however, HV did not change expression in air-exposed rats. Upstream target analysis revealed that ozone-induced transcriptomic changes were similar to responses induced by glucocorticoid-mediated processes in both sham and HV rats. The directionality of ozone-induced changes reflecting cellular response to stress, metabolic pathways, and immune surveillance was similar in sham and HV rats. However, pathways regulating cell-cycle, regeneration, proliferation, cell growth, and survival were enriched by ozone in a directionally opposing manner between sham and HV rats. In conclusion, parasympathetic innervation modulated ozone-induced liver transcriptional responses for cell growth and regeneration without affecting stress-mediated metabolic changes. Thus, impaired neuroendocrine axes and parasympathetic innervation could collectively contribute to adverse effects of air pollutants on the liver.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/toxicidade , Animais , Fígado , Masculino , Ozônio/toxicidade , Ratos , Ratos Endogâmicos WKY , Transcriptoma
3.
Toxicol Appl Pharmacol ; 415: 115430, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524446

RESUMO

Air pollutants may increase risk for cardiopulmonary disease, particularly in susceptible populations with metabolic stressors such as diabetes and unhealthy diet. We investigated effects of inhaled ozone exposure and high-cholesterol diet (HCD) in healthy Wistar and Wistar-derived Goto-Kakizaki (GK) rats, a non-obese model of type 2 diabetes. Male rats (4-week old) were fed normal diet (ND) or HCD for 12 weeks and then exposed to filtered air or 1.0 ppm ozone (6 h/day) for 1 or 2 days. We examined pulmonary, vascular, hematology, and inflammatory responses after each exposure plus an 18-h recovery period. In both strains, ozone induced acute bronchiolar epithelial necrosis and inflammation on histopathology and pulmonary protein leakage and neutrophilia; the protein leakage was more rapid and persistent in GK compared to Wistar rats. Ozone also decreased lymphocytes after day 1 in both strains consuming ND (~50%), while HCD increased circulating leukocytes. Ozone increased plasma thrombin/antithrombin complexes and platelet disaggregation in Wistar rats on HCD and exacerbated diet effects on serum IFN-γ, IL-6, KC-GRO, IL-13, and TNF-α, which were higher with HCD (Wistar>GK). Ex vivo aortic contractility to phenylephrine was lower in GK versus Wistar rats at baseline(~30%); ozone enhanced this effect in Wistar rats on ND. GK rats on HCD had higher aortic e-NOS and tPA expression compared to Wistar rats. Ozone increased e-NOS in GK rats on ND (~3-fold) and Wistar rats on HCD (~2-fold). These findings demonstrate ways in which underlying diabetes and HCD may exacerbate pulmonary, systemic, and vascular effects of inhaled pollutants.


Assuntos
Poluentes Atmosféricos/toxicidade , Aorta Torácica/efeitos dos fármacos , Colesterol na Dieta/toxicidade , Diabetes Mellitus Tipo 2/complicações , Dieta Aterogênica/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Ozônio/toxicidade , Doenças Vasculares/induzido quimicamente , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Colesterol na Dieta/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 2/sangue , Modelos Animais de Doenças , Mediadores da Inflamação/sangue , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Masculino , Necrose , Edema Pulmonar/sangue , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Ratos Wistar , Doenças Vasculares/sangue , Doenças Vasculares/fisiopatologia , Vasoconstrição/efeitos dos fármacos
4.
Biometals ; 34(1): 97-105, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33237470

RESUMO

To determine the effects of repeated physical activity on iron and zinc homeostases in a living system, we quantified blood and tissue levels of these two metals in sedentary and physically active Long-Evans rats. At post-natal day (PND) 22, female rats were assigned to either a sedentary or an active treatment group (n = 10/group). The physically active rats increased their use of a commercially-constructed stainless steel wire wheel so that, by the end of the study (PND 101), they were running an average of 512.8 ± 31.9 (mean ± standard error) min/night. After euthanization, plasma and aliquots of liver, lung, heart, and gastrocnemius muscle were obtained. Following digestion, non-heme iron and zinc concentrations in plasma and tissues were measured using inductively coupled plasma optical emission spectroscopy. Concentrations of both non-heme iron and zinc in plasma and liver were significantly decreased among the physically active rats relative to the sedentary animals. In the lung, both metals were increased in concentration among the physically active animals but the change in zinc did not reach significance. Similarly, tissue non-heme iron and zinc levels were both increased in heart and muscle from the physically active group. It is concluded that repeated physical activity in an animal model can be associated with a translocation of both iron and zinc from sites of storage (e.g. liver) to tissues with increased metabolism (e.g. the lung, heart, and skeletal muscle).


Assuntos
Homeostase/efeitos dos fármacos , Ferro/farmacologia , Zinco/farmacologia , Animais , Feminino , Ferro/análise , Condicionamento Físico Animal , Ratos , Ratos Long-Evans , Comportamento Sedentário , Zinco/análise
5.
Toxicol Appl Pharmacol ; 410: 115337, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217375

RESUMO

Dietary factors may modulate metabolic effects of air pollutant exposures. We hypothesized that diets enriched with coconut oil (CO), fish oil (FO), or olive oil (OO) would alter ozone-induced metabolic responses. Male Wistar-Kyoto rats (1-month-old) were fed normal diet (ND), or CO-, FO-, or OO-enriched diets. After eight weeks, animals were exposed to air or 0.8 ppm ozone, 4 h/day for 2 days. Relative to ND, CO- and OO-enriched diet increased body fat, serum triglycerides, cholesterols, and leptin, while all supplements increased liver lipid staining (OO > FO > CO). FO increased n-3, OO increased n-6/n-9, and all supplements increased saturated fatty-acids. Ozone increased total cholesterol, low-density lipoprotein, branched-chain amino acids (BCAA), induced hyperglycemia, glucose intolerance, and changed gene expression involved in energy metabolism in adipose and muscle tissue in rats fed ND. Ozone-induced glucose intolerance was exacerbated by OO-enriched diet. Ozone increased leptin in CO- and FO-enriched groups; however, BCAA increases were blunted by FO and OO. Ozone-induced inhibition of liver cholesterol biosynthesis genes in ND-fed rats was not evident in enriched dietary groups; however, genes involved in energy metabolism and glucose transport were increased in rats fed FO and OO-enriched diet. FO- and OO-enriched diets blunted ozone-induced inhibition of genes involved in adipose tissue glucose uptake and cholesterol synthesis, but exacerbated genes involved in adipose lipolysis. Ozone-induced decreases in muscle energy metabolism genes were similar in all dietary groups. In conclusion, CO-, FO-, and OO-enriched diets modified ozone-induced metabolic changes in a diet-specific manner, which could contribute to altered peripheral energy homeostasis.


Assuntos
Óleo de Coco/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Óleos de Peixe/metabolismo , Azeite de Oliva/metabolismo , Ozônio/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Óleo de Coco/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Óleos de Peixe/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Azeite de Oliva/administração & dosagem , Ozônio/administração & dosagem , Ratos , Ratos Endogâmicos WKY
6.
Toxicol Appl Pharmacol ; 409: 115296, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091443

RESUMO

Fish oil (FO) and olive oil (OO) supplementations attenuate the cardiovascular responses to inhaled concentrated ambient particles in human volunteers. This study was designed to examine the cardiovascular effects of ozone (O3) exposure and the efficacy of FO and OO-enriched diets in attenuating the cardiovascular effects from O3 exposure in rats. Rats were fed either a normal diet (ND), a diet enriched with 6% FO or OO starting at 4 weeks of age. Eight weeks following the start of these diet, animals were exposed to filtered air (FA) or 0.8 ppm O3, 4 h/day for 2 consecutive days. Immediately after exposure, cardiac function was measured as the indices of left-ventricular developed pressure (LVDP) and contractility (dP/dtmax and dP/dtmin) before ischemia. In addition, selective microRNAs (miRNAs) of inflammation, endothelial function, and cardiac function were assessed in cardiac tissues to examine the molecular alterations of diets and O3 exposure. Pre-ischemic LVDP and dP/dtmax were lower after O3 exposure in rats fed ND but not FO and OO. Cardiac miRNAs expressions were altered by both diet and O3 exposure. Specifically, O3-induced up-regulation of miR-150-5p and miR-208a-5p were attenuated by FO and/or OO. miR-21 was up-regulated by both FO and OO after O3 exposure. This study demonstrated that O3-induced cardiovascular responses appear to be blunted by FO and OO diets. O3-induced alterations in miRNAs linked to inflammation, cardiac function, and endothelial dysfunction support these pathways are involved, and dietary supplementation with FO or OO may alleviate these adverse cardiovascular effects in rats.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Óleos de Peixe/farmacologia , Azeite de Oliva/farmacologia , Ozônio/efeitos adversos , Animais , Sistema Cardiovascular/metabolismo , Dieta , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , MicroRNAs/metabolismo , Ratos , Ratos Endogâmicos WKY
7.
Sci Rep ; 9(1): 17925, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784596

RESUMO

Agonists of ß2 adrenergic receptors (ß2AR) and glucocorticoid receptors (GR) are prescribed to treat pulmonary diseases. Since ozone effects are mediated through the activation of AR and GR, we hypothesized that the treatment of rats with relevant therapeutic doses of long acting ß2AR agonist (LABA; clenbuterol; CLEN) and/or GR agonist (dexamethasone; DEX) would exacerbate ozone-induced pulmonary and systemic changes. In the first study, male 12-week-old Wistar-Kyoto rats were injected intraperitoneally with vehicle (saline), CLEN (0.004 or 0.02 mg/kg), or DEX (0.02 or 0.1 mg/kg). Since dual therapy is commonly used, in the second study, rats received either saline or combined CLEN + DEX (each at 0.005 or 0.02 mg/kg) one day prior to and on both days of exposure (air or 0.8ppm ozone, 4 hr/day x 2-days). In air-exposed rats CLEN, DEX or CLEN + DEX did not induce lung injury or inflammation, however DEX and CLEN + DEX decreased circulating lymphocytes, spleen and thymus weights, increased free fatty acids (FFA) and produced hyperglycemia and glucose intolerance. Ozone exposure of vehicle-treated rats increased bronchoalveolar lavage fluid protein, albumin, neutrophils, IL-6 and TNF-α. Ozone decreased circulating lymphocytes, increased FFA, and induced hypeerglycemia  and glucose intolerance. Drug treatment did not reverse ozone-induced ventillatory changes, however, lung effects (protein and albumin leakage, inflammation, and IL-6 increase) were exacerbated by CLEN and CLEN + DEX pre-treatment in a dose-dependent manner (CLEN > CLEN + DEX). Systemic effects induced by DEX and CLEN + DEX but not CLEN in air-exposed rats were analogous to and more pronounced than those induced by ozone. These data suggest that adverse air pollution effects might be exacerbated in people receiving LABA or LABA plus glucocorticoids.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Clembuterol/farmacologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Ozônio/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/efeitos adversos , Animais , Clembuterol/efeitos adversos , Dexametasona/efeitos adversos , Interações Medicamentosas , Ácidos Graxos/metabolismo , Glucocorticoides/efeitos adversos , Glucose/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Linfócitos/efeitos dos fármacos , Masculino , Ozônio/efeitos adversos , Ratos , Ratos Wistar , Baço/efeitos dos fármacos , Baço/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847143

RESUMO

Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.


Assuntos
Encéfalo/metabolismo , Óleo de Coco/farmacologia , Metabolismo Energético/efeitos dos fármacos , Óleos de Peixe/farmacologia , Mitocôndrias/metabolismo , Azeite de Oliva/farmacologia , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Microglia/metabolismo , Ratos , Ratos Endogâmicos WKY
9.
Toxicol Sci ; 172(1): 38-50, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397875

RESUMO

Acute ozone inhalation increases circulating stress hormones through activation of the sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal axes. Rats with adrenalectomy (AD) have attenuated ozone-induced lung responses. We hypothesized that ozone exposure will induce changes in circulating pituitary-derived hormones and global gene expression in the brainstem and hypothalamus, and that AD will ameliorate these effects. Male Wistar-Kyoto rats (13 weeks) that underwent sham surgery (SHAM) or AD were exposed to ozone (0.8 ppm) or filtered-air for 4 h. In SHAM rats, ozone exposure decreased circulating thyroid-stimulating hormone (TSH), prolactin (PRL), and luteinizing hormone (LH). AD prevented reductions in TSH and PRL, but not LH. AD increased adrenocorticotropic hormone approximately 5-fold in both air- and ozone-exposed rats. AD in air-exposed rats resulted in few significant transcriptional differences in the brainstem and hypothalamus (approximately 20 genes per tissue). In contrast, ozone-exposure in SHAM rats resulted in either increases or decreases in expression of hundreds of genes in the brainstem and hypothalamus relative to air-exposed SHAM rats (303 and 568 genes, respectively). Differentially expressed genes from ozone exposure were enriched for pathways involving hedgehog signaling, responses to alpha-interferon, hypoxia, and mTORC1, among others. Gene changes in both brain areas were analogous to those altered by corticosteroids and L-3,4-dihydroxyphenylalanine, suggesting a role for endogenous glucocorticoids and catecholamines. AD completely prevented this ozone-induced transcriptional response. These findings show that short-term ozone inhalation promotes a shift in brainstem and hypothalamic gene expression that is dependent upon the presence of circulating adrenal-derived stress hormones. This is likely to have profound downstream influence on systemic effects of ozone.

10.
Toxicol Sci ; 166(2): 288-305, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30379318

RESUMO

We have shown that acute ozone inhalation activates sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal stress axes, and adrenalectomy (AD) inhibits ozone-induced lung injury and inflammation. Therefore, we hypothesized that stress hormone receptor agonists (ß2 adrenergic-ß2AR and glucocorticoid-GR) will restore the ozone injury phenotype in AD, while exacerbating effects in sham-surgery (SH) rats. Male Wistar Kyoto rats that underwent SH or AD were treated with vehicles (saline + corn oil) or ß2AR agonist clenbuterol (CLEN, 0.2 mg/kg, i.p.) + GR agonist dexamethasone (DEX, 2 mg/kg, s.c.) for 1 day and immediately prior to each day of exposure to filtered air or ozone (0.8 ppm, 4 h/day for 1 or 2 days). Ozone-induced increases in PenH and peak-expiratory flow were exacerbated in CLEN+DEX-treated SH and AD rats. CLEN+DEX affected breath waveform in all rats. Ozone exposure in vehicle-treated SH rats increased bronchoalveolar lavage fluid (BALF) protein, N-acetyl glucosaminidase activity (macrophage activation), neutrophils, and lung cytokine expression while reducing circulating lymphocyte subpopulations. AD reduced these ozone effects in vehicle-treated rats. At the doses used herein, CLEN+DEX treatment reversed the protection offered by AD and exacerbated most ozone-induced lung effects while diminishing circulating lymphocytes. CLEN+DEX in air-exposed SH rats also induced marked protein leakage and reduced circulating lymphocytes but did not increase BALF neutrophils. In conclusion, circulating stress hormones and their receptors mediate ozone-induced vascular leakage and inflammatory cell trafficking to the lung. Those receiving ß2AR and GR agonists for chronic pulmonary diseases, or with increased circulating stress hormones due to psychosocial stresses, might have altered sensitivity to air pollution.


Assuntos
Adrenalectomia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Lesão Pulmonar/tratamento farmacológico , Ozônio/toxicidade , Pneumonia/tratamento farmacológico , Receptores de Glucocorticoides/agonistas , Animais , Líquido da Lavagem Broncoalveolar/química , Clembuterol/farmacocinética , Corticosterona/sangue , Citocinas/metabolismo , Dexametasona/farmacologia , Epinefrina/sangue , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Leucócitos/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Linfócitos/metabolismo , Masculino , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Distribuição Aleatória , Ratos , Ratos Endogâmicos WKY , Testes de Função Respiratória
11.
Toxicol Sci ; 163(1): 57-69, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329427

RESUMO

Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.


Assuntos
Aorta/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Lesão Pulmonar/induzido quimicamente , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Ozônio/toxicidade , Animais , Aorta/fisiopatologia , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Óleo de Coco/administração & dosagem , Óleos de Peixe/administração & dosagem , Células Espumosas/citologia , Inflamação , Lesão Pulmonar/imunologia , Lesão Pulmonar/fisiopatologia , Masculino , Músculo Liso Vascular/fisiopatologia , Azeite de Oliva/administração & dosagem , Ratos Endogâmicos WKY
12.
Toxicol Appl Pharmacol ; 339: 161-171, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247675

RESUMO

Recent studies showed that the circulating stress hormones, epinephrine and corticosterone/cortisol, are involved in mediating ozone-induced pulmonary effects through the activation of the sympathetic-adrenal-medullary (SAM) and hypothalamus-pituitary-adrenal (HPA) axes. Hence, we examined the role of adrenergic and glucocorticoid receptor inhibition in ozone-induced pulmonary injury and inflammation. Male 12-week old Wistar-Kyoto rats were pretreated daily for 7days with propranolol (PROP; a non-selective ß adrenergic receptor [AR] antagonist, 10mg/kg, i.p.), mifepristone (MIFE; a glucocorticoid receptor [GR] antagonist, 30mg/kg, s.c.), both drugs (PROP+MIFE), or respective vehicles, and then exposed to air or ozone (0.8ppm), 4h/d for 1 or 2 consecutive days while continuing drug treatment. Ozone exposure alone led to increased peak expiratory flow rates and enhanced pause (Penh); with greater increases by day 2. Receptors blockade minimally affected ventilation in either air- or ozone-exposed rats. Ozone exposure alone was also associated with marked increases in pulmonary vascular leakage, macrophage activation, neutrophilic inflammation and lymphopenia. Notably, PROP, MIFE and PROP+MIFE pretreatments significantly reduced ozone-induced pulmonary vascular leakage; whereas PROP or PROP+MIFE reduced neutrophilic inflammation. PROP also reduced ozone-induced increases in bronchoalveolar lavage fluid (BALF) IL-6 and TNF-α proteins and/or lung Il6 and Tnfα mRNA. MIFE and PROP+MIFE pretreatments reduced ozone-induced increases in BALF N-acetyl glucosaminidase activity, and lymphopenia. We conclude that stress hormones released after ozone exposure modulate pulmonary injury and inflammatory effects through AR and GR in a receptor-specific manner. Individuals with pulmonary diseases receiving AR and GR-related therapy might experience changed sensitivity to air pollution.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Antagonistas de Hormônios/farmacologia , Lesão Pulmonar/metabolismo , Ozônio/toxicidade , Receptores Adrenérgicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Líquido da Lavagem Broncoalveolar , Antagonistas de Hormônios/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Masculino , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Ratos , Ratos Endogâmicos WKY , Receptores de Glucocorticoides/antagonistas & inibidores
13.
Toxicol Appl Pharmacol ; 329: 249-258, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28623178

RESUMO

Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED) or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effects of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM) prior to their exposure to air or ozone (1ppm), 4h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and PI3K-AKT. Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced increases in lung Il6 in SHAM rats coincided with neutrophilic inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of Ifnγ and Il-4, the IL-4 protein and ratio of IL-4 to IFNγ (IL-4/IFNγ) proteins increased suggesting a tendency for a Th2 response. This did not occur in ADREX and DEMED rats. We demonstrate that ozone-induced lung injury and neutrophilic inflammation require the presence of circulating epinephrine and corticosterone, which transcriptionally regulates signaling mechanisms involved in this response.


Assuntos
Córtex Suprarrenal/metabolismo , Medula Suprarrenal/metabolismo , Corticosterona/sangue , Epinefrina/sangue , Lesão Pulmonar/induzido quimicamente , Pulmão/metabolismo , Ozônio , Pneumonia/induzido quimicamente , Estresse Fisiológico , Córtex Suprarrenal/cirurgia , Medula Suprarrenal/cirurgia , Adrenalectomia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/genética , Lesão Pulmonar/prevenção & controle , Masculino , Neutrófilos/metabolismo , Estresse Oxidativo , Pneumonia/sangue , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos WKY , Transdução de Sinais , Estresse Fisiológico/genética , Transcrição Gênica
14.
Inhal Toxicol ; 28(7): 313-23, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27097751

RESUMO

Ozone (O3) is known to induce adverse pulmonary and systemic health effects. Importantly, children and older persons are considered at-risk populations for O3-induced dysfunction, yet the mechanisms accounting for the age-related pulmonary responses to O3 are uncertain. In this study, we examined age-related susceptibility to O3 using 1 mo (adolescent), 4 mo (young adult), 12 mo (adult) and 24 mo (senescent) male Brown Norway rats exposed to filtered air or O3 (0.25 and 1.00 ppm), 6 h/day, two days/week for 1 week (acute) or 13 weeks (subchronic). Ventilatory function, assessed by whole-body plethysmography, and bronchoalveolar lavage fluid (BALF) biomarkers of injury and inflammation were used to examine O3-induced pulmonary effects. Relaxation time declined in all ages following the weekly exposures; however, this effect persisted only in the 24 mo rats following a five days recovery, demonstrating an inability to induce adaptation commonly seen with repeated O3 exposures. PenH was increased in all groups with an augmented response in the 4 mo rats following the subchronic O3 exposures. O3 led to increased breathing frequency and minute volume in the 1 and 4 mo animals. Markers of pulmonary permeability were increased in all age groups. Elevations in BALF γ-glutamyl transferase activity and lung inflammation following an acute O3 exposure were noted in only the 1 and 4 mo rats, which likely received an increased effective O3 dose. These data demonstrate that adolescent and young adult animals are more susceptible to changes in ventilation and pulmonary injury/inflammation caused by acute and episodic O3 exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Ozônio/toxicidade , Fatores Etários , Animais , Líquido da Lavagem Broncoalveolar/química , Pulmão/metabolismo , Pulmão/fisiologia , Lesão Pulmonar , Masculino , Pletismografia Total , Ratos Endogâmicos BN , Respiração/efeitos dos fármacos , gama-Glutamiltransferase/metabolismo
15.
Toxicol Sci ; 150(2): 312-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732886

RESUMO

Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Glândulas Suprarrenais/metabolismo , Hiperglicemia/metabolismo , Ozônio/toxicidade , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/induzido quimicamente , Glândulas Suprarrenais/cirurgia , Adrenalectomia , Animais , Corticosterona/sangue , Epinefrina/sangue , Intolerância à Glucose/tratamento farmacológico , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Exposição por Inalação , Masculino , Ratos Endogâmicos WKY
16.
Toxicol Sci ; 142(2): 403-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239632

RESUMO

Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe.


Assuntos
Cério/toxicidade , Gasolina/toxicidade , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Nanopartículas/química , Emissões de Veículos/toxicidade , Acetilglucosaminidase/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Líquido da Lavagem Broncoalveolar/química , Cério/química , Cério/farmacocinética , Relação Dose-Resposta a Droga , Gasolina/análise , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/enzimologia , Pulmão/ultraestrutura , Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Masculino , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ratos Sprague-Dawley , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos
17.
J Toxicol Environ Health A ; 77(19): 1164-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119738

RESUMO

Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.


Assuntos
Poluentes Atmosféricos/toxicidade , Inflamação/patologia , Lesão Pulmonar/patologia , Material Particulado/toxicidade , Doença Aguda , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimiocina CXCL2/metabolismo , Cidades , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Masculino , México , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Endogâmicos WKY , Trombose/induzido quimicamente , Trombose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA