Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
FEBS J ; 291(4): 744-760, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950580

RESUMO

During the infectious process, pathogenic microorganisms must obtain nutrients from the host in order to survive and proliferate. These nutritional sources include the metallic nutrient copper. Despite its essentiality, copper in large amounts is toxic. Host defense mechanisms use high copper poisoning as a fungicidal strategy to control infection. Transcriptional analyses showed that yeast cultured in the presence of copper or inside macrophages (24 h) had elevated expression of CRP1, a copper efflux pump, suggesting that Histoplasma capsulatum could be exposed to a high copper environment in macrophages during the innate immune stage of infection. Accordingly, macrophages cultured in high copper are more efficient in controlling H. capsulatum growth. Also, silencing of ATP7a, a copper pump that promotes the copper influx in phagosomes, increases fungal survival in macrophages. The rich copper environment faced by the fungus is not dependent on IFN-γ, since fungal CRP1 expression is induced in untreated macrophages. Appropriately, CRP1 knockdown fungal strains are more susceptible to macrophage control than wild-type yeasts. Additionally, CRP1 silencing decreases fungal burden in mice during the phase of innate immune response (4-day postinfection) and CRP1 is required for full virulence in a macrophage cell lines (J774 A.1 and RAW 264.7), as well as primary cells (BMDM). Thus, induction of fungal copper detoxifying genes during innate immunity and the attenuated virulence of CRP1-knockdown yeasts suggest that H. capsulatum is exposed to a copper-rich environment at early infection, but circumvents this condition to establish infection.


Assuntos
Cobre , Histoplasma , Animais , Camundongos , Histoplasma/genética , Cobre/metabolismo , Virulência , Macrófagos/metabolismo , Imunidade Inata
2.
Front Cell Infect Microbiol ; 13: 1275954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045758

RESUMO

Paracoccidioides spp. is the etiologic agent of Paracoccidioidomycosis (PCM), a systemic disease with wide distribution in Latin America. Macrophages are very important cells during the response to infection by P. brasiliensis. In this study, we performed a proteomic analysis to evaluate the consequences of P. brasiliensis yeast cells on the human THP-1 macrophage proteome. We have identified 443 and 2247 upregulated or downregulated proteins, respectively, in macrophages co-cultured with yeast cells of P. brasiliensis in comparison to control macrophages unexposed to the fungus. Proteomic analysis revealed that interaction with P. brasiliensis caused metabolic changes in macrophages that drastically affected energy production pathways. In addition, these macrophages presented regulated many factors related to epigenetic modifications and gene transcription as well as a decrease of many proteins associated to the immune system activity. This is the first human macrophage proteome derived from interactions with P. brasiliensis, which contributes to elucidating the changes that occur during the host response to this fungus. Furthermore, it highlights proteins that may be targets for the development of new therapeutic approaches to PCM.


Assuntos
Paracoccidioides , Humanos , Proteoma/metabolismo , Saccharomyces cerevisiae , Proteômica , Macrófagos/microbiologia
3.
Antibiotics (Basel) ; 12(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830117

RESUMO

Paracoccidioidomycosis (PCM) is a fungal disease caused by organisms of the genus Paracoccidioides spp. The treatment of the disease is lengthy and includes several adverse effects. Various methodologies focus on the search for new treatments against fungal disease, including the repositioning of drugs. Our group showed the fungicidal effect of mebendazole in P. brasiliensis cells. Thus, understanding the effect of exposing fungal cells to mebendazole is significant for further studies in order to demonstrate it as a potential drug for the treatment of PCM. A proteomic analysis of P. brasiliensis exposed to mebendazole was carried out. Analyses showed that exposure strongly affected the pathways related to energy production, such as glycolysis, fermentation, and the electron transport chain. The quantification of adenosine triphosphate (ATP) and mitochondrial activity demonstrated that the drug alters the electron chain, resulting in an increase in oxidative stress. Enzymes such as superoxide dismutase (SOD) and cytochrome c oxidase (Cyt C) were repressed in cells exposed to mebendazole. The concentration of ethanol produced by the cells under treatment demonstrated that the attempt to produce energy through fermentation is also arrested. Thus, the drug inhibits fungal growth through changes in energy metabolism, making it a promising compound for use in the treatment of PCM.

4.
Microorganisms ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838213

RESUMO

Paracoccidioides spp. are endemic fungi from Latin America that cause Paracoccidioidomycosis, a systemic disease. These fungi present systems for high-affinity metal uptake, storage, and mobilization, which counteract host nutritional immunity and mitigate the toxic effects of metals. Regarding Cu mobilization, the metallochaperone Atx1 is regulated according to Cu bioavailability in Paracoccidioides spp., contributing to metal homeostasis. However, additional information in the literature on PbAtx1 is scarce. Therefore, in the present work, we aimed to study the PbAtx1 protein-protein interaction networks. Heterologous expressed PbAtx1 was used in a pull-down assay with Paracoccidioides brasiliensis cytoplasmic extract. Nineteen proteins that interacted with PbAtx1 were identified by HPLC-MSE. Among them, a relevant finding was a Cytochrome b5 (PbCyb5), regulated by Fe bioavailability in Aspergillus fumigatus and highly secreted by P. brasiliensis in Fe deprivation. We validated the interaction between PbAtx1-PbCyb5 through molecular modeling and far-Western analyses. It is known that there is a relationship between Fe homeostasis and Cu homeostasis in organisms. In this sense, would PbAtx1-PbCyb5 interaction be a new metal-sensor system? Would it be supported by the presence/absence of metals? We intend to answer those questions in future works to contribute to the understanding of the strategies employed by Paracoccidioides spp. to overcome host defenses.

5.
Front Cell Infect Microbiol ; 12: 903070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719340

RESUMO

Fungi of the Paracoccidioides genus are the etiological agents of the systemic mycosis paracoccidioidomycosis and, when in the host, they find a challenging environment that is scarce in nutrients and micronutrients, such as Fe, which is indispensable for the survival of the pathogen. Previous studies have shown that fungi of this genus, in response to Fe deprivation, are able to synthesize and capture siderophores (Fe3+ chelators), use Fe-containing host proteins as a source of the metal, and use a non-canonical reductive pathway for Fe3+ assimilation. Despite all of these findings, there are still gaps that need to be filled in the pathogen response to metal deprivation. To contribute to the knowledge related to this subject, we obtained the exoproteome of Paracoccidioides brasiliensis (Pb18) undergoing Fe deprivation and by nanoUPLC-MSE. One hundred forty-one proteins were identified, and out of these, 64 proteins were predicted to be secreted. We also identified the regulation of several virulence factors. Among the results, we highlight Cyb5 as a secreted molecule of Paracoccidioides in the exoproteome obtained during Fe deprivation. Cyb5 is described as necessary for the Fe deprivation response of Saccharomyces cerevisiae and Aspergillus fumigatus. Experimental data and molecular modeling indicated that Cyb5 can bind to Fe ions in vitro, suggesting that it can be relevant in the arsenal of molecules related to iron homeostasis in P. brasiliensis.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Aspergillus fumigatus/metabolismo , Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Sideróforos/metabolismo
6.
J Biomol Struct Dyn ; 40(19): 9361-9373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34060981

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by fungi of the genus Paracoccidioides. The treatment of PCM is complex, requiring a long treatment period, which often results in serious side effects. The aim of this study was to screen for inhibitors of a specific target of the fungus that is absent in humans. Methylcitrate synthase (MCS) is a unique enzyme of microorganisms and is responsible for the synthesis of methylcitrate at the beginning of the propionate degradation pathway. This pathway is essential for several microorganisms, since the accumulation of propionyl-CoA can impair virulence and prevent the development of the pathogen. We performed the modeling and molecular dynamics of the structure of Paracoccidioides lutzii MCS (PlMCS) and performed a virtual screening on 89,415 compounds against the active site of the enzyme. The compounds were selected according to the affinity and efficiency criteria of in vitro tests. Six compounds were able to inhibit the enzymatic activity of recombinant PlMCS but only the compound ZINC08964784 showed fungistatic and fungicidal activity against Paracoccidioides spp. cells. The analysis of the interaction profile of this compound with PlMCS showed its effectiveness in terms of specificity and stability when compared to the substrate (propionyl-CoA) of the enzyme. In addition, this compound did not show cytotoxicity in mammalian cells, with an excellent selectivity index. Our results suggest that the compound ZINC08964784 may become a promising alternative antifungal against Paracoccidioides spp. Communicated by Ramaswamy H. Sarma.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Humanos , Animais , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/microbiologia , Citrato (si)-Sintase/farmacologia , Mamíferos
7.
J Virol Methods ; 271: 113675, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170469

RESUMO

Zika virus (ZIKV) is a current threat to global health. In most of cases, ZIKV infection has no symptoms; however in some cases, ZIKV can cause paralysis (Guillain-Barré syndrome), and in pregnant women, it can cause birth defects in infants. Rapid and accurate diagnosis can help improve disease control as well as being vital to prenatal care for women living in endemic areas. Molecular diagnostics based on isothermal amplification techniques are an excellent alternative to conventional methods of DNA amplification, such as PCR. Here, we develop and optimized a rapid and sensitive method for direct detection of ZIKV in Serum samples based on RT-LAMP and visual detection. The reaction was thermally controlled with a thermoblock for 10 min at 72 °C. The results show that the use of the Bst 3.0 enzyme and an adequate optimization can further reduce the time needed for the RT-LAMP reaction to detect ZIKV. Our results demonstrate that it is possible to detect ZIKV through RT-LAMP directly from a Serum sample, without prior RNA extraction. As little as 10-3 copies of RNA in a 10 µL reaction (20 zepto-molar) was detected by RT-LAMP from a panel of 51 Serum samples (16 samples from pregnant women and 35 samples from newborns infected with ZIKV during pregnancy). The RT-LAMP has proven to be a valuable tool for molecular diagnosis of Zika, presenting a great potential for point-of-care applications, especially in developing countries.


Assuntos
Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Infecção por Zika virus/sangue , Infecção por Zika virus/diagnóstico , Zika virus/isolamento & purificação , Feminino , Humanos , Recém-Nascido , Sistemas Automatizados de Assistência Junto ao Leito , Gravidez , Gestantes , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Fatores de Tempo
8.
Front Microbiol ; 10: 1301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244810

RESUMO

Paracoccidioidomycosis (PCM) is the most prevalent endemic mycosis in Latin America. The disease is caused by fungi of the genus Paracoccidioides and mainly affects low-income rural workers after inhalation of fungal conidia suspended in the air. The current arsenal of chemotherapeutic agents requires long-term administration protocols. In addition, chemotherapy is related to a significantly increased frequency of disease relapse, high toxicity, and incomplete elimination of the fungus. Due to the limitations of current anti-PCM drugs, we developed a computational drug repurposing-chemogenomics approach to identify approved drugs or drug candidates in clinical trials with anti-PCM activity. In contrast to the one-drug-one-target paradigm, our chemogenomics approach attempts to predict interactions between drugs, and Paracoccidioides protein targets. To achieve this goal, we designed a workflow with the following steps: (a) compilation and preparation of Paracoccidioides spp. genome data; (b) identification of orthologous proteins among the isolates; (c) identification of homologous proteins in publicly available drug-target databases; (d) selection of Paracoccidioides essential targets using validated genes from Saccharomyces cerevisiae; (e) homology modeling and molecular docking studies; and (f) experimental validation of selected candidates. We prioritized 14 compounds. Two antineoplastic drug candidates (vistusertib and BGT-226) predicted to be inhibitors of phosphatidylinositol 3-kinase TOR2 showed antifungal activity at low micromolar concentrations (<10 µM). Four antifungal azole drugs (bifonazole, luliconazole, butoconazole, and sertaconazole) showed antifungal activity at low nanomolar concentrations, validating our methodology. The results suggest our strategy for predicting new anti-PCM drugs is useful. Finally, we could recommend hit-to-lead optimization studies to improve potency and selectivity, as well as pharmaceutical formulations to improve oral bioavailability of the antifungal azoles identified.

9.
Microbes Infect ; 21(10): 456-463, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31075417

RESUMO

Staphylococcus saprophyticus is a gram-positive coagulase negative bacteria which shows clinical importance due to its capability of causing urinary tract infections (UTI), as well as its ability to persist in this environment. Little is known about how S. saprophyticus adapts to the pH shift that occurs during infection. Thus, in this study we aim to use a proteomic approach to analyze the metabolic adaptations which occur as a response by S. saprophyticus when exposed to acid (5.5) and alkaline (9.0) pH environments. Proteins related to iron storage are overexpressed in acid pH, whilst iron acquisition proteins are overexpressed in alkaline pH. It likely occurs because iron is soluble at acid pH and insoluble at alkaline pH. To evaluate if S. saprophyticus synthesizes siderophores, CAS assays were performed, and the results confirmed their production. The chemical characterization of siderophores demonstrates that S. saprophyticus produces carboxylates derived from citrate. Of special note is the fact that citrate synthase (CS) is down-regulated during incubation at acid pH, corroborating this result. This data was also confirmed by enzymatic assay. Our results demonstrate that iron metabolism regulation is influenced by different pH levels, and show, for the first time, the production of siderophores by S. saprophyticus. Enzymatic assays suggest that citrate from the tricarboxylic acid cycle (TCA) is used as substrate for siderophore production.


Assuntos
Ferro/metabolismo , Sideróforos/metabolismo , Staphylococcus saprophyticus/metabolismo , Animais , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Linhagem Celular , Citrato (si)-Sintase/metabolismo , Ácido Cítrico/metabolismo , Concentração de Íons de Hidrogênio , Deficiências de Ferro , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Óperon/genética , Proteômica , Sideróforos/química , Sideróforos/genética , Staphylococcus saprophyticus/genética , Staphylococcus saprophyticus/crescimento & desenvolvimento
10.
Front Microbiol ; 10: 96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804901

RESUMO

Although members of the Paracoccidioides complex are not obligate intracellular pathogens, they present the ability to survive and multiply inside epithelial cells and phagocytes of mammals, which may favor the spread of the fungus in host tissues. Macrophages resident in the lung are the first line of defense against paracoccidioidomycosis (PCM), presenting mechanisms to control the pathogen dissemination through the granuloma formation or eliminating the fungus through phagocytosis. Phagocytosis triggers an oxidative burst, in which there is an increase in the production of toxic elements, derived from oxygen and nitrogen. The interior of the phagolysosome is a harsh environment to the internalized pathogens, since in addition to the oxygen and nitrogen reactive species, microorganisms face nutrient shortages and proteases activity. Through the NanoUPLC-MS E technology, we analyzed the proteomic response of Paracoccidioides brasiliensis during the infection of alveolar macrophages primed or not by interferon gamma (IFN-γ). At 6 hs post-infection, only (IFN-γ)-primed macrophages were able to kill the fungus. We observed the regulation of amino acids degradation, tricarboxylic acid cycle, respiratory chain, ATP synthesis, glyoxylate cycle, as well as an increase in the expression of defense proteins related to oxidative stress, heat shock, and virulence factors under both conditions analyzed. However, some pathways described as essential for the survival of pathogens inside macrophages were observed only or with higher intensity in yeast cells recovered from non-primed macrophages, as phosphate pentoses pathway, methylcitrate cycle, synthesis of cell wall components, and mitochondrial activity. The data indicate that the intracellular environment of non-primed macrophages could be more permissive to the survival and multiplication of P. brasiliensis. The identification of key molecules for the establishment of infection can help the understanding of the nature of the parasite-host relationship and pathogenesis of PCM.

11.
Virulence ; 8(7): 1417-1434, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28704618

RESUMO

Paracoccidoides brasiliensis and Paracoccidioides lutzii, the etiologic agents of paracoccidioidomycosis, cause disease in healthy and immunocompromised persons in Latin America. We developed a method for harvesting P. brasiliensis yeast cells from infected murine lung to facilitate in vivo transcriptional and proteomic profiling. P. brasiliensis harvested at 6 h post-infection were analyzed using RNAseq and LC-MSE. In vivo yeast cells had 594 differentially expressed transcripts and 350 differentially expressed proteins. Integration of transcriptional and proteomic data indicated that early in infection (6 h), P. brasiliensis yeast cells underwent a shift in metabolism from glycolysis to ß-oxidation, upregulated detoxifying enzymes to defend against oxidative stress, and repressed cell wall biosynthesis. Bioinformatics and functional analyses also demonstrated that a serine proteinase was upregulated and secreted in vivo. To our knowledge this is the first study depicting transcriptional and proteomic data of P. brasiliensis yeast cells upon 6 h post-infection of mouse lung.


Assuntos
Proteínas Fúngicas/metabolismo , Paracoccidioides/fisiologia , Paracoccidioidomicose/microbiologia , Serina Proteases/metabolismo , Animais , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Paracoccidioides/enzimologia , Paracoccidioides/genética , Transporte Proteico , Proteômica , Serina Proteases/genética
12.
Front Microbiol ; 6: 821, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441843

RESUMO

Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, (59)Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation.

13.
PLoS One ; 10(9): e0137619, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360774

RESUMO

Macrophages are key players during Paracoccidioides brasiliensis infection. However, the relative contribution of the fungal response to counteracting macrophage activity remains poorly understood. In this work, we evaluated the P. brasiliensis proteomic response to macrophage internalization. A total of 308 differentially expressed proteins were detected in P. brasiliensis during infection. The positively regulated proteins included those involved in alternative carbon metabolism, such as enzymes involved in gluconeogenesis, beta-oxidation of fatty acids and amino acids catabolism. The down-regulated proteins during P. brasiliensis internalization in macrophages included those related to glycolysis and protein synthesis. Proteins involved in the oxidative stress response in P. brasiliensis yeast cells were also up-regulated during macrophage infection, including superoxide dismutases (SOD), thioredoxins (THX) and cytochrome c peroxidase (CCP). Antisense knockdown mutants evaluated the importance of CCP during macrophage infection. The results suggested that CCP is involved in a complex system of protection against oxidative stress and that gene silencing of this component of the antioxidant system diminished the survival of P. brasiliensis in macrophages and in a murine model of infection.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Estresse Oxidativo , Paracoccidioides/metabolismo , Animais , Linhagem Celular , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Regulação para Baixo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicólise , Camundongos , Paracoccidioides/genética , Paracoccidioides/patogenicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
14.
PLoS One ; 10(6): e0130703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114868

RESUMO

Paracoccidioidomycosis (PCM) is a systemic granulomatous human mycosis caused by fungi of the genus Paracoccidioides, which is geographically restricted to Latin America. Inhalation of spores, the infectious particles of the fungus, is a common route of infection. The PCM treatment of choice is azoles such as itraconazole, but sulfonamides and amphotericin B are used in some cases despite their toxicity to mammalian cells. The current availability of treatments highlights the need to identify and characterize novel targets for antifungal treatment of PCM as well as the need to search for new antifungal compounds obtained from natural sources or by chemical synthesis. To this end, we evaluated the antifungal activity of a camphene thiosemicarbazide derivative (TSC-C) compound on Paracoccidioides yeast. To determine the response of Paracoccidioides spp. to TSC-C, we analyzed the transcriptional profile of the fungus after 8 h of contact with the compound. The results demonstrate that Paracoccidioides lutzii induced the expression of genes related to metabolism; cell cycle and DNA processing; biogenesis of cellular components; cell transduction/signal; cell rescue, defense and virulence; cellular transport, transport facilities and transport routes; energy; protein synthesis; protein fate; transcription; and other proteins without classification. Additionally, we observed intensely inhibited genes related to protein synthesis. Analysis by fluorescence microscopy and flow cytometry revealed that the compound induced the production of reactive oxygen species. Using an isolate with down-regulated SOD1 gene expression (SOD1-aRNA), we sought to determine the function of this gene in the defense of Paracoccidioides yeast cells against the compound. Mutant cells were more susceptible to TSC-C, demonstrating the importance of this gene in response to the compound. The results presented herein suggest that TSC-C is a promising candidate for PCM treatment.


Assuntos
Antifúngicos/farmacologia , Paracoccidioides/genética , Semicarbazidas/química , Terpenos/química , Terpenos/farmacologia , Antifúngicos/química , Monoterpenos Bicíclicos , Etiquetas de Sequências Expressas , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Paracoccidioides/efeitos dos fármacos
15.
PLoS Negl Trop Dis ; 8(5): e2855, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24811072

RESUMO

BACKGROUND: The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. CONCLUSIONS/SIGNIFICANCE: For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding to carbon sources play a major role in adaptation and persistence in the host niche.


Assuntos
Paracoccidioides/metabolismo , Paracoccidioides/fisiologia , Proteoma/fisiologia , Estresse Fisiológico/fisiologia , Transcriptoma/fisiologia , Animais , Carbono/metabolismo , Linhagem Celular , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/microbiologia , Camundongos , Paracoccidioides/genética , Proteoma/metabolismo
16.
Fungal Genet Biol ; 60: 87-100, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911955

RESUMO

The genus Paracoccidioides comprises a complex of phylogenetic species of dimorphic pathogenic fungi, the etiologic agents of paracoccidioidomycosis (PCM), a disease confined to Latin America and of marked relevance in its endemic areas due to its high frequency and severity. The members of the Paracoccidioides genus are distributed in distinct phylogenetic species (S1, PS2, PS3 and 01-like) that potentially differ in their biochemical and molecular characteristics. In this work, we performed the proteomic characterization of different members of the genus Paracoccidioides. We compared the proteomic profiles of Pb01 (01-like), Pb2 (PS2), Pb339 (S1) and PbEPM83 (PS3) using 2D electrophoresis and mass spectrometry. The proteins/isoforms were selected based on the staining intensity of the spots as determined by image analysis. The proteins/isoforms were in-gel digested and identified by peptide mass fingerprinting and ion fragmentation. A total of 714 spots were detected, of which 343 were analyzed. From these spots, 301 represented differentially expressed proteins/isoforms among the four analyzed isolates, as determined by ANOVA. After applying the FDR correction, a total of 267 spots were determined to be differentially expressed. From the total, 193 proteins/isoforms were identified by PMF and confirmed by ion fragmentation. Comparing the expression profiles of the isolates, the proteins/isoforms that were related to glycolysis/gluconeogenesis and to alcohol fermentation were more abundant in Pb01 than in other representatives of the genus Paracoccidioides, indicating ahigher use of anaerobic pathways for energy production. Those enzymes related to the oxidative stress response were more abundant in Pb01, Pb2 and Pb339, indicating a better response to ROS in these members of the Paracoccidioides complex. The enzymes of the pentose phosphate pathway were abundant in Pb2. Antigenic proteins, such as GP43 and a 27-kDa antigenic protein, were less abundant in Pb01 and Pb2. The proteomic profile indicates metabolic differences among the analyzed members of the Paracoccidioides genus.


Assuntos
Proteínas Fúngicas/análise , Paracoccidioidomicose/genética , Paracoccidioidomicose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico/genética , Estresse Oxidativo/genética , Paracoccidioides/classificação , Paracoccidioides/genética , Mapeamento de Peptídeos , Filogenia , Proteoma
17.
Mem. Inst. Oswaldo Cruz ; 107(3): 310-316, May 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-624011

RESUMO

The aim of this work was the partial purification and subsequent evaluation of chitinase expression during the various growth phases of Paracoccidioides brasiliensis. Initially, PbCTS1r was expressed as a recombinant protein and displayed enzymatic activity against 4-MU-[N-acetylglucosamine (GlcNAc)]3 and 4-MU-(GlcNAc)2. Two proteins, 45 kDa and 39 kDa in size, were partially purified from P. brasiliensis yeast crude extract using cation-exchange chromatography coupled with HPLC and were characterised as PbCTS1 and PbCTS2, respectively. Anti-PbCTS1r antibody recognised two proteins in the crude extracts of yeast and the transitional stage between mycelial and yeast phases. In crude extracts of mycelium, only the 45 kDa protein was detected. However, quantitative real-time polymerase chain reaction led to the detection of small quantities of Pbcts2 transcript in the mycelial phase. In the yeast cell wall extract, only the 39 kDa protein was detected. Moreover, both proteins were secreted by the yeast parasitic phase, suggesting that these proteins participate in the modulation of the fungal environment. Phylogenetic analysis of the predicted PbCTS1 and PbCTS2 proteins indicated that they code for distinct chitinases in P. brasiliensis. During evolution, P. brasiliensis could have acquired the paralogues Pbcts1 and Pbcts2 for growth and survival in diverse environments in both saprophytic and parasitic phases.


Assuntos
Quitinases/metabolismo , Micélio/enzimologia , Paracoccidioides/enzimologia , Cromatografia Líquida de Alta Pressão , Quitinases/genética , DNA Complementar/genética , DNA Fúngico/genética , Regulação Enzimológica da Expressão Gênica , Micélio/crescimento & desenvolvimento , Filogenia , Paracoccidioides/genética , Paracoccidioides/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real
18.
Methods Mol Biol ; 845: 381-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22328389

RESUMO

Transcript profiling is an invaluable strategy to study differential gene expression. Here we describe a detailed protocol for applying a subtractive hybridization technique, representational difference analysis (RDA), as a molecular strategy for the identification of differentially expressed genes in studies of host-fungus interaction. Bioinformatics tools that can be used in the analysis of expressed sequence tags (ESTs) are also detailed.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Paracoccidioides/genética , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/microbiologia , Animais , Biologia Computacional , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioides/imunologia , Paracoccidioides/fisiologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/microbiologia
19.
Rev. bras. parasitol. vet ; 20(4): 274-280, Dec. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-609119

RESUMO

The genus Babesia comprises protozoa that cause diseases known as babesiosis. Dogs are commonly affected by Babesia canis or Babesia gibsoni. Babesia canis is divided into the subspecies Babesia canis canis, Babesia canis vogeli and Babesia canis rossi. Among these, Babesia canis vogeli predominates in Brazil. The objective of this study was to conduct a phylogenetic analysis on Babesia isolates from dogs in Goiânia, Goiás. Blood samples were obtained from 890 dogs presenting clinical signs suggestive of canine babesiosis that were attended at a veterinary hospital of Goiás. Only samples presenting typical intraerythrocytic parasites were used in the study. These were subjected to DNA extraction and amplification of a fragment of the 18S rRNA, by means of PCR. The PCR products were purified and sequenced. Sequences were obtained from 35 samples but only 17 of these were kept after quality assessment. Similarity analysis using BLASTn demonstrated that all 17 sequences corresponded to B. canis vogeli. Analysis using the Mega4 software showed that the isolates of B. canis vogeli from dogs in Goiânia present a high degree of molecular similarity (99.2 to 100 percent) in comparison with other reference isolates from other regions of Brazil and worldwide, deposited in GenBank.


O gênero Babesia compreende protozoários causadores de enfermidades denominadas babesioses. Cães geralmente são acometidos por Babesia canis ou Babesia gibsoni, sendo a primeira classificada em subespécies Babesia canis canis, Babesia canis vogeli e Babesia canis rossi. Entre essas, Babesia canis vogeli predomina no Brasil. O objetivo desse trabalho foi realizar estudo filogenético de amostras de Babesia em cães, em Goiânia, Goiás. Amostras de sangue foram obtidas de 890 cães atendidos no Hospital Veterinário de Goiás, apresentando sinais clínicos de babesiose. Somente amostras com presença de parasitos intraeritrocitários típicos foram utilizadas. Estas foram submetidas a extração de DNA e amplificação de fragmento do gene 18S rRNA pela PCR. Os produtos de PCR foram purificados e sequenciados. Foram sequenciadas 35 amostras, das quais apenas 17 foram mantidas após avaliação de qualidade. A análise de similaridade fornecida pelo BLASTn demonstrou que as 17 sequências deste estudo eram correspondentes a Babesia canis vogeli. Pela utilização do programa Mega4, foi possível verificar que as amostras de Babesia canis vogeli, provenientes de cães da cidade de Goiânia, apresentam, alto grau de similaridade molecular (99,2 a 100 por cento) com isolados de referência de outras regiões do Brasil e do mundo, depositados em GenBank.


Assuntos
Animais , Cães , Babesia/classificação , Babesia/genética , Brasil , Filogenia
20.
PLoS Genet ; 7(10): e1002345, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046142

RESUMO

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Assuntos
Onygenales/genética , Paracoccidioides/genética , Paracoccidioidomicose/microbiologia , Proteínas Quinases/genética , Metabolismo dos Carboidratos/genética , Sistemas de Liberação de Medicamentos , Evolução Molecular , Genoma Fúngico , Genoma Mitocondrial/genética , Humanos , Família Multigênica/genética , Onygenales/enzimologia , Paracoccidioides/enzimologia , Filogenia , Proteólise , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA