Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(8): e0012333, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39121159

RESUMO

American tegumentary leishmaniasis (ATL) is highly endemic in the Amazon basin and occurs in all South American countries, except Chile and Uruguay. Most Brazilian ATL cases are due to Leishmania (Viannia) braziliensis, however other neglected Amazonian species are being increasingly reported. They belong to the subgenus L. (Viannia) and information on suitable models to understand immunopathology are scarce. Here, we explored the use of the golden hamster Mesocricetus auratus and its macrophages as a model for L. (Viannia) species. We also studied the interaction of parasite glycoconjugates (LPGs and GIPLs) in murine macrophages. The following strains were used: L. (V.) braziliensis (MHOM/BR/2001/BA788), L. (V.) guyanensis (MHOM/BR/85/M9945), L. (V.) shawi (MHOM/BR/96/M15789), L. (V.) lindenbergi (MHOM/BR/98/M15733) and L. (V.) naiffi (MDAS/BR/79/M5533). In vivo infections were initiated by injecting parasites into the footpad and were followed up at 20- and 40-days PI. Parasites were mixed with salivary gland extract (SGE) from wild-captured Nyssomyia neivai prior to in vivo infections. Animals were euthanized for histopathological evaluation of the footpads, spleen, and liver. The parasite burden was evaluated in the skin and draining lymph nodes. In vitro infections used resident peritoneal macrophages and THP-1 monocytes infected with all species using a MOI (1:10). For biochemical studies, glycoconjugates (LPGs and GIPLs) were extracted, purified, and biochemically characterized using fluorophore-assisted carbohydrate electrophoresis (FACE). They were functionally evaluated after incubation with macrophages from C57BL/6 mice and knockouts (TLR2-/- and TLR4-/-) for nitric oxide (NO) and cytokine/chemokine production. All species, except L. (V.) guyanensis, failed to generate evident macroscopic lesions 40 days PI. The L. (V.) guyanensis lesions were swollen but did not ulcerate and microscopically were characterized by an intense inflammatory exudate. Despite the fact the other species did not produce visible skin lesions there was no or mild pro-inflammatory infiltration at the inoculation site and parasites survived in the hamster skin/lymph nodes and even visceralized. Although none of the species caused severe disease in the hamster, they differentially infected peritoneal macrophages in vitro. LPGs and GIPLs were able to differentially trigger NO and cytokine production via TLR2/TLR4 and TLR4, respectively. The presence of a sidechain in L. (V.) lainsoni LPG (type II) may be responsible for its higher proinflammatory activity. After Principal Component analyses using all phenotypic features, the clustering of L. (V.) lainsoni was separated from all the other L. (Viannia) species. We conclude that M. auratus was a suitable in vivo model for at least four dermotropic L. (Viannia) species. However, in vitro studies using peritoneal cells are a suitable alternative for understanding interactions of the six L. (Viannia) species used here. LRV1 presence was found in L. (V.) guyanensis and L. (V.) shawi with no apparent correlation with virulence in vitro and in vivo. Finally, parasite glycoconjugates were able to functionally trigger various innate immune responses in murine macrophages via TLRs consistent with their inflammatory profile in vivo.


Assuntos
Modelos Animais de Doenças , Leishmania , Macrófagos , Mesocricetus , Animais , Macrófagos/parasitologia , Macrófagos/imunologia , Camundongos , Leishmania/patogenicidade , Cricetinae , Virulência , Feminino , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/imunologia , Glicoconjugados , Masculino
2.
Mem Inst Oswaldo Cruz ; 119: e220242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198296

RESUMO

BACKGROUND: Eosinophils are granulocytes that rapidly increase frequency in the bloodstream during helminthic infections and allergic responses. They are found in tissue infected by Leishmania during early disease, but their role during infection is not entirely understood. OBJECTIVES: We aim to compare the disease due to Leishmania amazonensis in BALB/c and Δdbl-GATA1 mice, which lack eosinophils. METHODS: BALB/c and Δdbl-GATA1 mice infected with L. amazonensis were observed for several weeks. The parasite load and dissemination pattern were assessed. FINDINGS: The Δdbl-GATA1 mice developed an anticipated dissemination of L. amazonensis and a worsening disease. No differences were found in the lesion development or the parasite load in the footpad among Δdbl-GATA1 mice and BALB/c eight weeks after infection. However, nine weeks after infection, massive growth of metastatic lesions appeared in several parts of the skin in Δdbl-GATA1 mice, weeks earlier than BALB/c. We observed increased parasites in the bloodstream, probably an essential dissemination route. Thirteen weeks after infection, metastatic lesions were found in all Δdbl-GATA1 mice. MAIN CONCLUSION: These results suggest a protective role of eosinophils in delaying the disease caused by L. amazonensis, although several limitations of this mice strain must be considered.


Assuntos
Leishmania mexicana , Leishmania , Animais , Camundongos , Eosinófilos , Carga Parasitária , Pele
3.
Mem. Inst. Oswaldo Cruz ; 119: e220242, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1529022

RESUMO

BACKGROUND Eosinophils are granulocytes that rapidly increase frequency in the bloodstream during helminthic infections and allergic responses. They are found in tissue infected by Leishmania during early disease, but their role during infection is not entirely understood. OBJECTIVES We aim to compare the disease due to Leishmania amazonensis in BALB/c and Δdbl-GATA1 mice, which lack eosinophils. METHODS BALB/c and Δdbl-GATA1 mice infected with L. amazonensis were observed for several weeks. The parasite load and dissemination pattern were assessed. FINDINGS The Δdbl-GATA1 mice developed an anticipated dissemination of L. amazonensis and a worsening disease. No differences were found in the lesion development or the parasite load in the footpad among Δdbl-GATA1 mice and BALB/c eight weeks after infection. However, nine weeks after infection, massive growth of metastatic lesions appeared in several parts of the skin in Δdbl-GATA1 mice, weeks earlier than BALB/c. We observed increased parasites in the bloodstream, probably an essential dissemination route. Thirteen weeks after infection, metastatic lesions were found in all Δdbl-GATA1 mice. MAIN CONCLUSION These results suggest a protective role of eosinophils in delaying the disease caused by L. amazonensis, although several limitations of this mice strain must be considered.

4.
Mem. Inst. Oswaldo Cruz ; 119: e230243, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1558562

RESUMO

BACKGROUND Leishmania tarentolae is a non-pathogenic species found in lizards representing an important model for Leishmania biology. However, several aspects of this Sauroleishmania remain unknown to explain its low level of virulence. OBJECTIVES We reported several aspects of L. tarentolae biology including glycoconjugates, proteolytic activities and metabolome composition in comparison to pathogenic species (Leishmania amazonensis, Leishmania braziliensis, Leishmania infantum and Leishmania major). METHODS Parasites were cultured for extraction and purification of lipophosphoglycan (LPG), immunofluorescence probing with anti-gp63 and resistance against complement. Parasite extracts were also tested for proteases activity and metabolome composition. FINDINGS Leishmania tarentolae does not express LPG on its surface. It expresses gp63 at lower levels compared to pathogenic species and, is highly sensitive to complement-mediated lysis. This species also lacks intracellular/extracellular activities of proteolytic enzymes. It has metabolic differences with pathogenic species, exhibiting a lower abundance of metabolites including ABC transporters, biosynthesis of unsaturated fatty acids and steroids, TCA cycle, glycine/serine/threonine metabolism, glyoxylate/dicarboxylate metabolism and pentose-phosphate pathways. MAIN CONCLUSIONS The non-pathogenic phenotype of L. tarentolae is associated with alterations in several biochemical and molecular features. This reinforces the need of comparative studies between pathogenic and non-pathogenic species to elucidate the molecular mechanisms of virulence during host-parasite interactions.

5.
Vet Parasitol Reg Stud Reports ; 41: 100881, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37208087

RESUMO

Leishmania infantum infections have long been described in humans and dogs worldwide, but characterization of equine cases remains scarce. We describe the clinical evolution of a natural L. infantum infection to contribute to the diagnostic knowledge and epidemiology of equine leishmaniasis (EL). An auction-acquired four-year-old Mangalarga Marchador mare from Pernambuco state, presented a few subcutaneous nodules on the head and neck upon arrival at the purchaser's stud at Bahia state, in November of 2019. They progressed to multiple ulcerated and non-ulcerated nodules and spread to both right limbs in seven weeks. Hematology revealed anemia, lymphocytosis, monocytosis, and elevated plasma fibrinogen. Histopathology of the biopsied nodules identified a granulomatous dermatitis with macrophages containing Leishmania amastigotes. PCR detected Leishmania in skin lesions, but not in blood or spleen aspirate samples; ITS1 PCR-RFLP and DNA sequencing confirmed L. infantum species. A topical antiseptic and insect-repellent therapy and a monthly follow-up were established. All lesions improved progressively, without specific anti-Leishmania treatment, and 14 months later there was a consistent resolution. This first description of EL by L. infantum in an endemic area is relevant to emphasize the need for epidemiological studies, and to enhance clinicians' awareness for differential diagnosis.


Assuntos
Doenças do Cão , Doenças dos Cavalos , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Animais , Cavalos , Humanos , Cães , Leishmania infantum/genética , Brasil/epidemiologia , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/veterinária , Leishmaniose Visceral/epidemiologia , Doenças do Cão/epidemiologia , Leishmaniose/veterinária , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/epidemiologia
6.
Mem. Inst. Oswaldo Cruz ; 118: e230071, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1514607

RESUMO

BACKGROUND Leishmania RNA virus 1 (LRV1) is commonly found in South American Leishmania parasites belonging to the subgenus Viannia, whereas Leishmania RNA virus 2 (LRV2) was previously thought to be restricted to the Old-World pathogens of the subgenus Leishmania. OBJECTIVES In this study, we investigated the presence of LRV2 in strains of Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), originating from different hosts, clinical forms, and geographical regions. METHODS A total of seventy-one isolates were screened for LRV2 using semi-nested reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. FINDINGS We detected LRV2 in two L. infantum isolates (CUR268 and HP-EMO) from canine and human cases, respectively. MAIN CONCLUSIONS To the best of our knowledge, this is the first detection of LRV2 in the New World.

7.
Front Cell Infect Microbiol ; 12: 805720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402314

RESUMO

Interleukin-32 (IL-32) is produced during Leishmania infection, but the components of the parasite that induce its production are unknown. An important multivirulence factor of Leishmania spp. protozoa is the lipophosphoglycan (LPG), which plays a crucial role in the host-parasite interaction. Here, the ability of LPGs from two dermotropic Leishmania species to induce IL-32 production was evaluated in human peripheral blood mononuclear cells (PBMCs). Additionally, the potential receptors involved in this activation were assessed. PBMCs from healthy individuals were stimulated with LPGs from L. amazonensis (La) or L. braziliensis (Lb), live promastigotes of La or Lb and E. coli lipopolysaccharide (LPS, TLR4 agonist) as control. Blockers of TLR4 (Bartonella quintana LPS or monoclonal antibody) and Ponatinib (RIPK2 inhibitor, NOD2 pathway) were used to evaluate the receptors. ELISA was performed for IL-32 expression and cytokine (IL-1ß and IL-6) production in cell lysates and in supernatants, respectively. Expression of TLR4 (2 h, 24 h) was assessed by flow cytometry. IL-32γ mRNA transcript was analyzed by qPCR. It was observed that LPG from Leishmania, like whole parasites, induced the production of IL-32, IL-1ß and IL-6. Both LPGs induced the expression of IL32γ mRNA. The production of IL-32 was earlier detected (6 h) and positively associated with the production of IL-1ß and IL-6. The induction of cytokines (IL-32, IL-1ß and IL-6) was dependent on TLR4 and NOD2. The TLR4 was internalized after interaction with LPG. Therefore, our data suggest that LPGs from La and Lb are components of Leishmania able to upregulate IL-32 and other pro-inflammatory cytokines in a TLR4- and NOD2-dependent manner. In addition, LPG-induced IL-32 seems to be necessary for IL-1ß and IL-6 production. To identify the parasite factors and host receptors involved in IL-32 induction is crucial to reveal potential targets for novel strategies to control leishmaniasis.


Assuntos
Leishmania , Leishmaniose , Citocinas/metabolismo , Escherichia coli/genética , Glicoesfingolipídeos , Humanos , Interleucina-6/metabolismo , Interleucinas/metabolismo , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Proteína Adaptadora de Sinalização NOD2/metabolismo , RNA Mensageiro , Receptor 4 Toll-Like/metabolismo
8.
Mem. Inst. Oswaldo Cruz ; 117: e220065, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1386347

RESUMO

BACKGROUND Leishmania (Mundinia) enriettii is a species commonly found in the guinea pig, Cavia porcellus. Although it is a dermotropic species, there is still an uncertainty regarding its ability to visceralise during Leishmania life cycle. OBJECTIVE Here, we investigated the ability of L. enriettii (strain L88) to visceralise in lungs, trachea, spleen, and liver of C. porcellus, its natural vertebrate host. METHODS Animals were infected sub-cutaneously in the nose and followed for 12 weeks using histological (hematoxilin-eosin) and molecular tools (polymerase chain reaction-restriction fragment length polymorphism - PCR-RFLP). To isolate parasite from C. porcellus, animals were experimentally infected for viscera removal and PCR typing targeting hsp70 gene. FINDINGS Histological analysis revealed intense and diffuse inflammation with the presence of amastigotes in the trachea, lung, and spleen up to 12 weeks post-infection (PI). Molecular analysis of paraffin-embedded tissues detected parasite DNA in the trachea and spleen between the 4th and 8th weeks PI. At the 12th PI, no parasite DNA was detected in any of the organs. To confirm that the spleen could serve as a temporary site for L. enriettii, we performed additional in vivo experiments. During 6th week PI, the parasite was isolated from the spleen confirming previous histopathological and PCR observations. MAIN CONCLUSION Leishmania enriettii (strain L88) was able to visceralise in the trachea, lung, and spleen of C. porcellus.

9.
J Immunol Res ; 2021: 2939693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604391

RESUMO

All extracellular forms of Trypanosoma cruzi, the causative agent of Chagas disease, release extracellular vesicles (EVs) containing major surface molecules of the parasite. EV release depends on several mechanisms (internal and external). However, most of the environmental conditions affecting this phenomenon are still unknown. In this work, we evaluated EV release under different stress conditions and their ability to be internalized by the parasites. In addition, we investigated whether the release conditions would affect their immunomodulatory properties in preactivated bone marrow-derived macrophages (BMDM). Sodium azide and methyl-cyclo-ß-dextrin (CDB) reduced EV release, indicating that this phenomenon relies on membrane organization. EV release was increased at low temperatures (4°C) and acidic conditions (pH 5.0). Under this pH, trypomastigotes differentiated into amastigotes. EVs are rapidly liberated and reabsorbed by the trypomastigotes in a concentration-dependent manner. Nitrosative stress caused by sodium nitrite in acid medium or S-nitrosoglutathione also stimulated the secretion of EVs. EVs released under all stress conditions also maintained their proinflammatory activity and increased the expression of iNOS, Arg 1, IL-12, and IL-23 genes in IFN-γ and LPS preactivated BMDM. In conclusion, our results suggest a budding mechanism of release, dependent on the membrane structure and parasite integrity. Stress conditions did not affect functional properties of EVs during interaction with host cells. EV release variations under stress conditions may be a physiological response against environmental changes.


Assuntos
Vesículas Extracelulares/imunologia , Macrófagos/imunologia , Estresse Fisiológico/imunologia , Trypanosoma cruzi/imunologia , Animais , Linhagem Celular , Células Cultivadas , Temperatura Baixa , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Concentração de Íons de Hidrogênio , Imunidade/genética , Imunidade/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nitrito de Sódio/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/fisiologia
10.
FASEB J ; 35(5): e21509, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813781

RESUMO

Extracellular adenosine plays important roles in modulating the immune responses. We have previously demonstrated that infection of dendritic cells (DC) by Leishmania amazonensis leads to increased expression of CD39 and CD73 and to the selective activation of the low affinity A2B receptors (A2B R), which contributes to DC inhibition, without involvement of the high affinity A2A R. To understand this apparent paradox, we now characterized the alterations of both adenosine receptors in infected cells. With this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Fluorescence microscopy revealed that L. amazonensis infection stimulates the recruitment of A2B R, but not of A2A R, to the surface of infected DC, without altering the amount of mRNA or the total A2B R density, an effect dependent on lipophosphoglycan (LPG). Log-phase promastigotes or axenic amastigotes of L. amazonensis do not stimulate A2B R recruitment. A2B R clusters are localized in caveolin-rich lipid rafts and the disruption of these membrane domains impairs A2B R recruitment and activation. More importantly, our results show that A2B R co-localize with CD39 and CD73 forming a "purinergic cluster" that allows for the production of extracellular adenosine in close proximity with these receptors. We conclude that A2B R activation by locally produced adenosine constitutes an elegant and powerful evasion mechanism used by L. amazonensis to down-modulate the DC activation.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Caveolina 1/metabolismo , Células Dendríticas/imunologia , Leishmaniose/imunologia , Microdomínios da Membrana/imunologia , Receptor A2B de Adenosina/metabolismo , Animais , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Imunidade , Imunomodulação , Leishmania/imunologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Masculino , Microdomínios da Membrana/parasitologia , Microdomínios da Membrana/patologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Cell Biol Int ; 45(5): 1060-1071, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33448518

RESUMO

Free living amoeba of the genus Acanthamoeba are opportunist protozoan involved in corneal, systemic, and encephalic infections in humans. Most of the mechanisms underlying intraspecies variations and pathogenicity are still unknown. Recently, the release of extracellular vesicles (EVs) by Acanthamoeba was reported. However, comparative characterization of EVs from distinct strains is not available. The aim of this study was to evaluate EVs produced by Acanthamoeba from different genotypes, comparing their proteases profile and immunomodulatory properties. EVs from four environmental or clinical strains (genotypes T1, T2, T4, and T11) were obtained by ultracentrifugation, quantitated by nanoparticle tracking analysis and analyzed by scanning and transmission electron microscopy. Proteases profile was determined by zymography and functional properties of EVs (measure of nitrite and cytokine production) were determined after peritoneal macrophage stimulation. Despite their genotype, all strains released EVs and no differences in size and/or concentration were detected. EVs exhibited a predominant activity of serine proteases (pH 7.4 and 3.5), with higher intensity in T4 and T1 strains. EVs from the environmental, nonpathogenic T11 strain exhibited a more proinflammatory profile, inducing higher levels of Nitrite, tumor necrosis factor alpha and interleukin-6 via TLR4/TLR2 than those strains with pathogenic traits (T4, T1, and T2). Preincubation with EVs treated with protease inhibitors or heating drastically decreased nitrite concentration production in macrophages. Those data suggest that immunomodulatory effects of EVs may reflect their pathogenic potential depending on the Acanthamoeba strains and are dependent on protease integrity.


Assuntos
Acanthamoeba/genética , Acanthamoeba/metabolismo , Vesículas Extracelulares/imunologia , Acanthamoeba/classificação , Animais , Vesículas Extracelulares/fisiologia , Feminino , Genótipo , Fatores Imunológicos/imunologia , Fatores Imunológicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
12.
J Leukoc Biol ; 108(6): 1803-1814, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32356366

RESUMO

B-1 cells are a B-lymphocyte subtype whose roles in immunity are not completely defined. These cells can produce cytokines (mainly IL-10) and natural and specific antibodies. Currently, extracellular vesicles (EVs) released by immune cells have emerged as new important entities in cell-cell communication. Immune cells release EVs that can activate and/or modulate other immune cells. Here, we characterized the EVs released by peritoneal B-1 cells infected or not with Leishmania (Leishmania) amazonensis. This Leishmania species causes cutaneous leishmaniasis and can infect macrophages and B-1 cells. Our results showed that peritoneal B-1 cells spontaneously release EVs, but the parasite stimulated an increase in EVs production by peritoneal B-1 cells. The treatment of BALB/c and C57BL/6 bone marrow-derived macrophages (BMDM) with EVs from infected peritoneal B-1 cells led to differential expression of iNOS, IL-6, IL-10, and TNF-α. Additionally, BALB/c mice previous treated with EVs released by peritoneal B-1 cells showed a significant lower lesion size and parasite burden. Thus, this study demonstrated that peritoneal B-1 cells could release EVs that can alter the functions of macrophages in vitro and in vivo these EVs altered the course of L. amazonensis infection. These findings represent the first evidence that EVs from peritoneal B-1 cells can act as a new mechanism of cellular communication between macrophages and B-1 cells, contributing to immunity against experimental leishmaniasis.


Assuntos
Subpopulações de Linfócitos B/imunologia , Comunicação Celular/imunologia , Vesículas Extracelulares/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos Peritoneais/imunologia , Animais , Subpopulações de Linfócitos B/patologia , Citocinas/imunologia , Vesículas Extracelulares/patologia , Feminino , Leishmaniose/patologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/imunologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-32266161

RESUMO

Extracellular vesicles (EVs) shed by trypomastigote forms of Trypanosoma cruzi have the ability to interact with host tissues, increase invasion, and modulate the host innate response. In this study, EVs shed from T. cruzi or T.cruzi-infected macrophages were investigated as immunomodulatory agents during the initial steps of infection. Initially, by scanning electron microscopy and nanoparticle tracking analysis, we determined that T. cruzi-infected macrophages release higher numbers of EVs (50-300 nm) as compared to non-infected cells. Using Toll-like-receptor 2 (TLR2)-transfected CHO cells, we observed that pre-incubation of these host cells with parasite-derived EVs led to an increase in the percentage of infected cells. In addition, EVs from parasite or T.cruzi-infected macrophages or not were able to elicit translocation of NF-κB by interacting with TLR2, and as a consequence, to alter the EVs the gene expression of proinflammatory cytokines (TNF-α, IL-6, and IL-1ß), and STAT-1 and STAT-3 signaling pathways. By proteomic analysis, we observed highly significant changes in the protein composition between non-infected and infected host cell-derived EVs. Thus, we observed the potential of EVs derived from T. cruzi during infection to maintain the inflammatory response in the host.


Assuntos
Vesículas Extracelulares , Trypanosoma cruzi , Animais , Cricetinae , Cricetulus , Humanos , Macrófagos , Proteômica , Receptor 2 Toll-Like
14.
Artigo em Inglês | MEDLINE | ID: mdl-31555609

RESUMO

Leishmania (Viannia) braziliensis is responsible for the largest number of American tegumentary leishmaniasis (ATL) in Brazil. ATL can present several clinical forms including typical (TL) and atypical (AL) cutaneous and mucocutaneous (ML) lesions. To identify parasite and host factors potentially associated with these diverse clinical manifestations, we first surveyed the expression of two virulence-associated glycoconjugates, lipophosphoglycan (LPG) and the metalloprotease GP63 by a panel of promastigotes of Leishmania braziliensis (L. braziliensis) strains isolated from patients with different clinical manifestations of ATL and from the sand fly vector. We observed a diversity of expression patterns for both LPG and GP63, which may be related to strain-specific polymorphisms. Interestingly, we noted that GP63 activity varies from strain to strain, including the ability to cleave host cell molecules. We next evaluated the ability of promastigotes from these L. braziliensis strains to modulate phagolysosome biogenesis in bone marrow-derived macrophages (BMM), by assessing phagosomal recruitment of the lysosome-associated membrane protein 1 (LAMP-1) and intraphagosomal acidification. Whereas, three out of six L. braziliensis strains impaired the phagosomal recruitment of LAMP-1, only the ML strain inhibited phagosome acidification to the same extent as the L. donovani strain that was used as a positive control. While decreased phagosomal recruitment of LAMP-1 correlated with higher LPG levels, decreased phagosomal acidification correlated with higher GP63 levels. Finally, we observed that the ability to infect and replicate within host cells did not fully correlate with the inhibition of phagosome maturation. Collectively, our results revealed a diversity of strain-specific phenotypes among L. braziliensis isolates, consistent with the high genetic diversity within Leishmania populations.


Assuntos
Glicoesfingolipídeos/metabolismo , Interações Hospedeiro-Patógeno , Leishmania braziliensis/imunologia , Leishmaniose Mucocutânea/imunologia , Leishmaniose Mucocutânea/parasitologia , Metaloendopeptidases/metabolismo , Fagossomos/metabolismo , Animais , Células Cultivadas , Evasão da Resposta Imune , Leishmania braziliensis/crescimento & desenvolvimento , Proteína 1 de Membrana Associada ao Lisossomo/antagonistas & inibidores , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos Endogâmicos C57BL , Biogênese de Organelas
15.
Artigo em Inglês | MEDLINE | ID: mdl-31355149

RESUMO

Lipophosphoglycan (LPG) is the major Leishmania surface glycoconjugate having importance during the host-parasite interface. Leishmania (Viannia) braziliensis displays a spectrum of clinical forms including: typical cutaneous leishmaniasis (TL), mucocutaneous (ML), and atypical lesions (AL). Those variations in the immunopathology may be a result of intraspecies polymorphisms in the parasite's virulence factors. In this context, we evaluated the role of LPG of strains originated from patients with different clinical manifestations and the sandfly vector. Six isolates of L. braziliensis were used: M2903, RR051 and RR418 (TL), RR410 (AL), M15991 (ML), and M8401 (vector). LPGs were extracted and purified by hydrophobic interaction. Peritoneal macrophages from C57BL/6 and respective knock-outs (TLR2-/- and TLR-4-/-) were primed with IFN-γ and exposed to different LPGs for nitric oxide (NO) and cytokine production (IL-1ß, IL-6, IL-12, and TNF-α). LPGs differentially activated the production of NO and cytokines via TLR4. In order to ascertain if such functional variations were related to intraspecies polymorphisms in the LPG, the purified glycoconjugates were subjected to western blot with specific LPG antibodies (CA7AE and LT22). Based on antibody reactivity preliminary variations in the repeat units were detected. To confirm these findings, LPGs were depolymerized for purification of repeat units. After thin layer chromatography, intraspecies polymorphisms were confirmed especially in the type and/size of sugars branching-off the repeat units motif. In conclusion, different isolates of L. braziliensis from different clinical forms and hosts possess polymorphisms in their LPGs that functionally affected macrophage responses.


Assuntos
Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Leishmaniose Cutânea/imunologia , Ativação de Macrófagos , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Técnicas de Inativação de Genes , Glicoesfingolipídeos/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico , Psychodidae/parasitologia , Receptor 4 Toll-Like/genética , Fatores de Virulência
16.
Front Immunol ; 10: 1362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316499

RESUMO

CBA mice macrophages (MØ) control infection by Leishmania major and are susceptive to Leishmania amazonensis, suggesting that both parasite species induce distinct responses that play important roles in infection outcome. To evaluate the MØ responses to infection arising from these two Leishmania species, a proteomic study using a Multidimensional Protein Identification Technology (MudPIT) approach with liquid chromatography tandem mass spectrometry (LC-MS/MS) was carried out on CBA mice bone-marrow MØ (BMMØ). Following SEQUEST analysis, which revealed 2,838 proteins detected in BMMØ, data mining approach found six proteins significantly associated with the tested conditions. To investigate their biological significance, enrichment analysis was performed using Ingenuity Pathway Analysis (IPA). A three steps IPA approach revealed 4 Canonical Pathways (CP) and 7 Upstream Transcriptional Factors (UTFs) strongly associated with the infection process. NRF2 signatures were present in both CPs and UTFs pathways. Proteins involved in iron metabolism, such as heme oxigenase 1 (HO-1) and ferritin besides sequestosome (SQSMT1 or p62) were found in the NRF2 CPs and the NRF2 UTFs. Differences in the involvement of iron metabolism pathway in Leishmania infection was revealed by the presence of HO-1 and ferritin. Noteworty, HO-1 was strongly associated with L. amazonensis infection, while ferritin was regulated by both species. As expected, higher HO-1 and p62 expressions were validated in L. amazonensis-infected BMMØ, in addition to decreased expression of ferritin and nitric oxide production. Moreover, BMMØ incubated with L. amazonensis LPG also expressed higher levels of HO-1 in comparison to those stimulated with L. major LPG. In addition, L. amazonensis-induced uptake of holoTf was higher than that induced by L. major in BMMØ, and holoTf was also detected at higher levels in vacuoles induced by L. amazonensis. Taken together, these findings indicate that NRF2 pathway activation and increased HO-1 production, together with higher levels of holoTf uptake, may promote permissiveness to L. amazonensis infection. In this context, differences in protein signatures triggered in the host by L. amazonensis and L. major infection could drive the outcomes in distinct clinical forms of leishmaniasis.


Assuntos
Leishmaniose/metabolismo , Macrófagos/parasitologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Ferritinas/metabolismo , Heme Oxigenase-1/metabolismo , Leishmania , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Óxido Nítrico/metabolismo , Proteômica , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
17.
Mem. Inst. Oswaldo Cruz ; 114: e190111, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1020081

RESUMO

BACKGROUND In addition to the limited therapeutic arsenal and the side effects of antileishmanial agents, drug resistance hinders disease control. In Brazil, Leishmania braziliensis causes atypical (AT) tegumentary leishmaniasis lesions, frequently refractory to treatment. OBJECTIVES The main goal of this study was to characterise antimony (Sb)-resistant (SbR) L. braziliensis strains obtained from patients living in Xakriabá indigenous community, Minas Gerais, Brazil. METHODS The aquaglyceroporin 1-encoding gene (AQP1) from L. braziliensis clinical isolates was sequenced, and its function was evaluated by hypo-osmotic shock. mRNA levels of genes associated with Sb resistance were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Atomic absorption was used to measure Sb uptake. FINDINGS Although clinical isolates presented delayed recovery time in hypo-osmotic shock, AQP1 function was maintained. Isolate 340 accumulated less Sb than all other isolates, supporting the 65-fold downregulation of AQP1 mRNA levels. Both 330 and 340 isolates upregulated antimony resistance marker (ARM) 56/ARM58 and multidrug resistant protein A (MRPA); however, only ARM58 upregulation was an exclusive feature of SbR field isolates. CA7AE seemed to increase drug uptake in L. braziliensis and represented a tool to study the role of glycoconjugates in Sb transport. MAIN CONCLUSIONS There is a clear correlation between ARM56/58 upregulation and Sb resistance in AT-harbouring patients, suggesting the use of these markers as potential indicators to help the treatment choice and outcome, preventing therapeutic failure.


Assuntos
Humanos , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/genética , Resistência a Medicamentos/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Aquagliceroporinas/metabolismo , Antimônio/farmacologia , Resistência a Medicamentos/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Mem. Inst. Oswaldo Cruz ; 113(3): 202-205, Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1040591

RESUMO

BACKGROUND Lutzomyia umbratilis, the vector for Leishmania guyanensis in northern South America, has been found naturally infected with L. guyanensis only in areas north of the Negro and Amazon rivers. While populations of this sand fly species are also found in areas south of these rivers, these populations have never been reported to be infected and/or transmitting L. guyanensis. However, no studies on the corresponding host-parasite interactions are available. OBJECTIVES This study evaluated the interaction between Lu. guyanensis promastigotes and field-collected Lu. umbratilis sand flies from Rio Preto da Eva and Manacapuru, which are located to the north and south, respectively, of the Negro River. METHODS Procyclic and metacyclic attachment was quantified using an in vitro system. FINDINGS Low attachment of parasites to the midguts of insects collected from Manacapuru was detected. Conversely, greater binding of metacyclic parasites was observed in the midguts of insects collected from Rio Preto da Eva, and this attachment was more pronounced than that observed for procyclics (p < 0.03). MAIN CONCLUSIONS The Lu. umbratilis population from an area south of the Negro River has lower in vitro interaction with L. guyanensis. The higher attachment of L. guyanensis to midguts of insects from Rio Preto da Eva may suggest better vector competence. These findings are in accordance with previously reported epidemiological information of American cutaneous leishmaniasis (ACL) transmission in the Amazon.


Assuntos
Animais , Feminino , Psychodidae/parasitologia , Leishmania guyanensis/fisiologia , Sistema Digestório/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Psychodidae/classificação , Brasil , Rios , Geografia
19.
Mem. Inst. Oswaldo Cruz ; 113(5): e170333, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-894920

RESUMO

BACKGROUND Leishmania major is an Old World species causing cutaneous leishmaniasis and is transmitted by Phlebotomus papatasi and Phlebotomus duboscqi. In Brazil, two isolates from patients who never left the country were characterised as L. major-like (BH49 and BH121). Using molecular techniques, these isolates were indistinguishable from the L. major reference strain (FV1). OBJECTIVES We evaluated the lipophosphoglycans (LPGs) of the strains and their behaviour in Old and New World sand fly vectors. METHODS LPGs were purified, and repeat units were qualitatively evaluated by immunoblotting. Experimental in vivo infection with L. major-like strains was performed in Lutzomyia longipalpis (New World, permissive vector) and Ph. papatasi (Old World, restrictive or specific vector). FINDINGS The LPGs of both strains were devoid of arabinosylated side chains, whereas the LPG of strain BH49 was more galactosylated than that of strain BH121. All strains with different levels of galactosylation in their LPGs were able to infect both vectors, exhibiting colonisation of the stomodeal valve and metacyclogenesis. The BH121 strain (less galactosylated) exhibited lower infection intensity compared to BH49 and FV1 in both vectors. MAIN CONCLUSIONS Intraspecific variation in the LPG of L. major-like strains occur, and the different galactosylation levels affected interactions with the invertebrate host.


Assuntos
Humanos , Leishmania major , Proteínas de Membrana Lisossomal , Psychodidae , Interações Hospedeiro-Parasita
20.
Sci Rep ; 7(1): 14321, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084985

RESUMO

Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.


Assuntos
Glicoesfingolipídeos/imunologia , Leishmania infantum/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , PPAR gama/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Células Cultivadas , Dinoprostona/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA