Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1238533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725571

RESUMO

Background: Transient hypoxia-induced deoxyhemoglobin (dOHb) has recently been shown to represent a comparable contrast to gadolinium-based contrast agents for generating resting perfusion measures in healthy subjects. Here, we investigate the feasibility of translating this non-invasive approach to patients with brain tumors. Methods: A computer-controlled gas blender was used to induce transient precise isocapnic lung hypoxia and thereby transient arterial dOHb during echo-planar-imaging acquisition in a cohort of patients with different types of brain tumors (n = 9). We calculated relative cerebral blood volume (rCBV), cerebral blood flow (rCBF), and mean transit time (MTT) using a standard model-based analysis. The transient hypoxia induced-dOHb MRI perfusion maps were compared to available clinical DSC-MRI. Results: Transient hypoxia induced-dOHb based maps of resting perfusion displayed perfusion patterns consistent with underlying tumor histology and showed high spatial coherence to gadolinium-based DSC MR perfusion maps. Conclusion: Non-invasive transient hypoxia induced-dOHb was well-tolerated in patients with different types of brain tumors, and the generated rCBV, rCBF and MTT maps appear in good agreement with perfusion maps generated with gadolinium-based DSC MR perfusion.

2.
AJNR Am J Neuroradiol ; 45(1): 44-50, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38164530

RESUMO

BACKGROUND AND PURPOSE: MR imaging-based cerebral perfusion metrics can be obtained by tracing the passage of a bolus of contrast through the microvasculature of the brain parenchyma. Thus, the temporal signal pattern of the contrast agent is typically measured over a large artery such as the MCA to generate the arterial input function. The largest intracranial arteries in the brain may not always be suitable for selecting the arterial input function due to skull base susceptibility artifacts or reduced size from steno-occlusive disease. Therefore, a suitable alternative arterial input function window would be useful. The choroid plexus is a highly vascular tissue composed essentially of arterialized blood vessels and acellular stroma with low metabolic requirements relative to its blood flow and may be a suitable alternative to identify the arterial input function. MATERIALS AND METHODS: We studied 8 healthy participants and 7 patients with gliomas who were administered a bolus of gadolinium. We selected an arterial input function from both the left and right M1 segments of the MCA and both lateral ventricles of the choroid plexus for each participant. We compared the changes in the T2* signal and the calculated resting perfusion metrics using the arterial input functions selected from the MCA and choroid plexus. RESULTS: We found no systematic difference between resting perfusion metrics in GM and WM when calculated using an arterial input function from the MCA or choroid plexus in the same participant. CONCLUSIONS: The choroid plexus provides an alternative location from which an arterial input function may be sampled when a suitable measure over an MCA is not available.


Assuntos
Plexo Corióideo , Imageamento por Ressonância Magnética , Humanos , Artérias , Perfusão , Circulação Cerebrovascular/fisiologia
3.
Quant Imaging Med Surg ; 11(11): 4530-4542, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34737921

RESUMO

BACKGROUND: Evidence suggests that cerebrovascular reactivity (CVR) increases within the first week after the incidence of concussion, indicating a disruption of normal autoregulation. We sought to extend these findings by investigating the effects of acute concussion on the speed of CVR response and by visualizing global and regional impairments in individual patients with acute concussion. METHODS: Twelve patients aged 18-40 years who experienced concussion less than a week before this prospective study were included. Twelve age and sex-matched healthy subjects constituted the control group. In all subjects, CVR was assessed using blood oxygenation level-dependent (BOLD) echo-planar imaging with a 3.0T MRI scanner, in combination with changes in end-tidal partial pressure of CO2 (PETCO2). In each subject, we calculated the CVR amplitude and CVR response time in the gray and white matter using a step and ramp PETCO2 challenge. In addition, a separate group of 39 healthy controls who underwent the same evaluation was used to create atlases with voxel-wise mean and standard deviation of CVR amplitude and CVR response time. This allowed us to convert each metric of the 12 patients with concussion and the 12 healthy controls into z-score maps. These maps were then used to generate and compare z-scores for each of the two groups. Group differences were calculated using an unpaired t-test. RESULTS: All studies were well tolerated without any serious adverse events. Anatomical MRI was normal in all study subjects. No differences in CO2 stimulus and O2 targeting were observed between the two participant groups during BOLD MRI. With regard to the gray matter, the CVR magnitude step (P=0.117) and ramp + 10 (P=0.085) were not significantly different between patients with concussion and healthy controls. However, the tau value was significantly lower in patients with concussion than in the healthy controls (P=0.04). With regard to the white matter, the CVR magnitude step (P=0.003) and ramp + 10 (P=0.031) were significantly higher and the tau value (P=0.024) was significantly shorter in patients with concussion than in healthy controls. After z-score transformation, the z tau value was significantly lower in patients with concussion than in healthy controls (Grey matter P=0.021, White matter P=0.003). Comparison of the three parameters, z ramp + 10, z step, and z tau, between the two groups showed that z step (Grey matter P=0.035, White matter P=0.005) was the most sensitive parameter and that z ramp + 10 (Grey matter P=0.073, White matter P=0.126) was the least sensitive parameter. CONCLUSIONS: Concussion is associated with patient-specific abnormalities in BOLD cerebrovascular responsiveness that occur in the setting of normal global CVR. This study demonstrates that the measurement of CVR using BOLD MRI and precise CO2 control is a safe, reliable, reproducible, and clinically useful method for evaluating the state of patients with concussion. It has the potential to be an important tool for assessing the severity and duration of symptoms after concussion.

4.
Quant Imaging Med Surg ; 11(2): 608-619, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33532261

RESUMO

BACKGROUND: The aim of this study was to determine the relationship between blood oxygen level dependent (BOLD) cerebrovascular reactivity (CVR) and cerebral blood flow (CBF) obtained from arterial spin labeling (ASL) using different post labeling delays (PLD). METHODS: Forty-two patients with steno-occlusive diseases and impaired CVR were divided into two groups, one scanned with a 1.5-second (1.5-s) and the other with a 2.5-second (2.5-s) PLD ASL protocol. For all patients, a region of interest (ROI) was drawn around the CVR impairment. This affected ROI was then left-right flipped across the brain midline to obtain the control ROI. For both groups, the difference in grey matter CVR between affected and control ROI was first tested to confirm significance. The average grey matter CBF of affected and control ROIs were then compared. The same analysis method was used to compare affected and control hemispheres. RESULTS: In both groups of 1.5-s and 2.5-s PLD, CVR values in the affected ROI (-0.049±0.055 and -0.042±0.074%/mmHg, respectively) were significantly lower compared to that in the control ROI (0.152±0.054 and 0.152±0.053%/mmHg, respectively, P<0.0001). In the group with the 1.5-s PLD, CBF in the affected ROI (37.62±11.37 mL/100 g/min) was significantly lower compared to CBF in the control ROI (44.13±11.58 mL/100 g/min, P<0.05). However, in the group with the 2.5-s PLD, no significant differences could be seen between CBF in the affected ROI (40.50±14.82 mL/100 g/min) and CBF in the control ROI (39.68±12.49 mL/100 g/min, P=0.73). In the hemisphere-based analysis, CBF was significantly lower in the affected side than in the control side for the group with the 1.5-s PLD (P<0.05) when CVR was impaired (P<0.0001), but not for the group with the 2.5-s PLD (P=0.49). CONCLUSIONS: In conclusion, our study reveals and highlights the value of a shorter-PLD ASL protocol, which is able to reflect CVR impairment. At the same time, we offer a better understanding of the relationship between BOLD CVR and CBF obtained from ASL.

5.
J Nucl Med ; 58(6): 953-960, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28254864

RESUMO

Myocardial blood flow (MBF) is the critical determinant of cardiac function. However, its response to increases in partial pressure of arterial CO2 (PaCO2), particularly with respect to adenosine, is not well characterized because of challenges in blood gas control and limited availability of validated approaches to ascertain MBF in vivo. Methods: By prospectively and independently controlling PaCO2 and combining it with 13N-ammonia PET measurements, we investigated whether a physiologically tolerable hypercapnic stimulus (∼25 mm Hg increase in PaCO2) can increase MBF to that observed with adenosine in 3 groups of canines: without coronary stenosis, subjected to non-flow-limiting coronary stenosis, and after preadministration of caffeine. The extent of effect on MBF due to hypercapnia was compared with adenosine. Results: In the absence of stenosis, mean MBF under hypercapnia was 2.1 ± 0.9 mL/min/g and adenosine was 2.2 ± 1.1 mL/min/g; these were significantly higher than at rest (0.9 ± 0.5 mL/min/g, P < 0.05) and were not different from each other (P = 0.30). Under left-anterior descending coronary stenosis, MBF increased in response to hypercapnia and adenosine (P < 0.05, all territories), but the effect was significantly lower than in the left-anterior descending coronary territory (with hypercapnia and adenosine; both P < 0.05). Mean perfusion defect volumes measured with adenosine and hypercapnia were significantly correlated (R = 0.85) and were not different (P = 0.12). After preadministration of caffeine, a known inhibitor of adenosine, resting MBF decreased; and hypercapnia increased MBF but not adenosine (P < 0.05). Conclusion: Arterial blood CO2 tension when increased by 25 mm Hg can induce MBF to the same level as a standard dose of adenosine. Prospectively targeted arterial CO2 has the capability to evolve as an alternative to current pharmacologic vasodilators used for cardiac stress testing.


Assuntos
Adenosina/administração & dosagem , Dióxido de Carbono/sangue , Estenose Coronária/sangue , Estenose Coronária/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Cães , Teste de Esforço/métodos , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vasodilatadores
6.
Radiology ; 272(2): 397-406, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24749715

RESUMO

PURPOSE: To examine whether controlled and tolerable levels of hypercapnia may be an alternative to adenosine, a routinely used coronary vasodilator, in healthy human subjects and animals. MATERIALS AND METHODS: Human studies were approved by the institutional review board and were HIPAA compliant. Eighteen subjects had end-tidal partial pressure of carbon dioxide (PetCO2) increased by 10 mm Hg, and myocardial perfusion was monitored with myocardial blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. Animal studies were approved by the institutional animal care and use committee. Anesthetized canines with (n = 7) and without (n = 7) induced stenosis of the left anterior descending artery (LAD) underwent vasodilator challenges with hypercapnia and adenosine. LAD coronary blood flow velocity and free-breathing myocardial BOLD MR responses were measured at each intervention. Appropriate statistical tests were performed to evaluate measured quantitative changes in all parameters of interest in response to changes in partial pressure of carbon dioxide. RESULTS: Changes in myocardial BOLD MR signal were equivalent to reported changes with adenosine (11.2% ± 10.6 [hypercapnia, 10 mm Hg] vs 12% ± 12.3 [adenosine]; P = .75). In intact canines, there was a sigmoidal relationship between BOLD MR response and PetCO2 with most of the response occurring over a 10 mm Hg span. BOLD MR (17% ± 14 [hypercapnia] vs 14% ± 24 [adenosine]; P = .80) and coronary blood flow velocity (21% ± 16 [hypercapnia] vs 26% ± 27 [adenosine]; P > .99) responses were similar to that of adenosine infusion. BOLD MR signal changes in canines with LAD stenosis during hypercapnia and adenosine infusion were not different (1% ± 4 [hypercapnia] vs 6% ± 4 [adenosine]; P = .12). CONCLUSION: Free-breathing T2-prepared myocardial BOLD MR imaging showed that hypercapnia of 10 mm Hg may provide a cardiac hyperemic stimulus similar to adenosine.


Assuntos
Circulação Coronária/fisiologia , Hipercapnia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adenosina/farmacologia , Animais , Cães , Eletrocardiografia , Humanos , Aumento da Imagem/métodos , Oximetria , Reprodutibilidade dos Testes , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA