Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Circ Arrhythm Electrophysiol ; 17(4): e012022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38415356

RESUMO

BACKGROUND: Germline HRAS gain-of-function pathogenic variants cause Costello syndrome (CS). During early childhood, 50% of patients develop multifocal atrial tachycardia, a treatment-resistant tachyarrhythmia of unknown pathogenesis. This study investigated how overactive HRAS activity triggers arrhythmogenesis in atrial-like cardiomyocytes (ACMs) derived from human-induced pluripotent stem cells bearing CS-associated HRAS variants. METHODS: HRAS Gly12 mutations were introduced into a human-induced pluripotent stem cells-ACM reporter line. Human-induced pluripotent stem cells were generated from patients with CS exhibiting tachyarrhythmia. Calcium transients and action potentials were assessed in induced pluripotent stem cell-derived ACMs. Automated patch clamping assessed funny currents. HCN inhibitors targeted pacemaker-like activity in mutant ACMs. Transcriptomic data were analyzed via differential gene expression and gene ontology. Immunoblotting evaluated protein expression associated with calcium handling and pacemaker-nodal expression. RESULTS: ACMs harboring HRAS variants displayed higher beating rates compared with healthy controls. The hyperpolarization activated cyclic nucleotide gated potassium channel inhibitor ivabradine and the Nav1.5 blocker flecainide significantly decreased beating rates in mutant ACMs, whereas voltage-gated calcium channel 1.2 blocker verapamil attenuated their irregularity. Electrophysiological assessment revealed an increased number of pacemaker-like cells with elevated funny current densities among mutant ACMs. Mutant ACMs demonstrated elevated gene expression (ie, ISL1, TBX3, TBX18) related to intracellular calcium homeostasis, heart rate, RAS signaling, and induction of pacemaker-nodal-like transcriptional programming. Immunoblotting confirmed increased protein levels for genes of interest and suppressed MAPK (mitogen-activated protein kinase) activity in mutant ACMs. CONCLUSIONS: CS-associated gain-of-function HRASG12 mutations in induced pluripotent stem cells-derived ACMs trigger transcriptional changes associated with enhanced automaticity and arrhythmic activity consistent with multifocal atrial tachycardia. This is the first human-induced pluripotent stem cell model establishing the mechanistic basis for multifocal atrial tachycardia in CS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Pré-Escolar , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Átrios do Coração/metabolismo , Taquicardia , Canais de Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais de Ação/fisiologia , Diferenciação Celular , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
2.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260376

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have gained traction as a powerful model in cardiac disease and therapeutics research, since iPSCs are self-renewing and can be derived from healthy and diseased patients without invasive surgery. However, current iPSC-CM differentiation methods produce cardiomyocytes with immature, fetal-like electrophysiological phenotypes, and the variety of maturation protocols in the literature results in phenotypic differences between labs. Heterogeneity of iPSC donor genetic backgrounds contributes to additional phenotypic variability. Several mathematical models of iPSC-CM electrophysiology have been developed to help understand the ionic underpinnings of, and to simulate, various cell responses, but these models individually do not capture the phenotypic variability observed in iPSC-CMs. Here, we tackle these limitations by developing a computational pipeline to calibrate cell preparation-specific iPSC-CM electrophysiological parameters. We used the genetic algorithm (GA), a heuristic parameter calibration method, to tune ion channel parameters in a mathematical model of iPSC-CM physiology. To systematically optimize an experimental protocol that generates sufficient data for parameter calibration, we created simulated datasets by applying various protocols to a population of in silico cells with known conductance variations, and we fitted to those datasets. We found that calibrating models to voltage and calcium transient data under 3 varied experimental conditions, including electrical pacing combined with ion channel blockade and changing buffer ion concentrations, improved model parameter estimates and model predictions of unseen channel block responses. This observation held regardless of whether the fitted data were normalized, suggesting that normalized fluorescence recordings, which are more accessible and higher throughput than patch clamp recordings, could sufficiently inform conductance parameters. Therefore, this computational pipeline can be applied to different iPSC-CM preparations to determine cell line-specific ion channel properties and understand the mechanisms behind variability in perturbation responses.

3.
Front Pharmacol ; 14: 1158222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101545

RESUMO

Introduction: Tyrosine kinase inhibitor drugs (TKIs) are highly effective cancer drugs, yet many TKIs are associated with various forms of cardiotoxicity. The mechanisms underlying these drug-induced adverse events remain poorly understood. We studied mechanisms of TKI-induced cardiotoxicity by integrating several complementary approaches, including comprehensive transcriptomics, mechanistic mathematical modeling, and physiological assays in cultured human cardiac myocytes. Methods: Induced pluripotent stem cells (iPSCs) from two healthy donors were differentiated into cardiac myocytes (iPSC-CMs), and cells were treated with a panel of 26 FDA-approved TKIs. Drug-induced changes in gene expression were quantified using mRNA-seq, changes in gene expression were integrated into a mechanistic mathematical model of electrophysiology and contraction, and simulation results were used to predict physiological outcomes. Results: Experimental recordings of action potentials, intracellular calcium, and contraction in iPSC-CMs demonstrated that modeling predictions were accurate, with 81% of modeling predictions across the two cell lines confirmed experimentally. Surprisingly, simulations of how TKI-treated iPSC-CMs would respond to an additional arrhythmogenic insult, namely, hypokalemia, predicted dramatic differences between cell lines in how drugs affected arrhythmia susceptibility, and these predictions were confirmed experimentally. Computational analysis revealed that differences between cell lines in the upregulation or downregulation of particular ion channels could explain how TKI-treated cells responded differently to hypokalemia. Discussion: Overall, the study identifies transcriptional mechanisms underlying cardiotoxicity caused by TKIs, and illustrates a novel approach for integrating transcriptomics with mechanistic mathematical models to generate experimentally testable, individual-specific predictions of adverse event risk.

4.
Sci Data ; 9(1): 18, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058449

RESUMO

Drug Toxicity Signature Generation Center (DToxS) at the Icahn School of Medicine at Mount Sinai is one of the centers for the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) program. Its key aim is to generate proteomic and transcriptomic signatures that can predict cardiotoxic adverse effects of kinase inhibitors approved by the Food and Drug Administration. Towards this goal, high throughput shotgun proteomics experiments (308 cell line/drug combinations +64 control lysates) have been conducted. Using computational network analyses, these proteomic data can be integrated with transcriptomic signatures, generated in tandem, to identify cellular signatures of cardiotoxicity that may predict kinase inhibitor-induced toxicity and enable possible mitigation. Both raw and processed proteomics data have passed several quality control steps and been made publicly available on the PRIDE database. This broad protein kinase inhibitor-stimulated human cardiomyocyte proteomic data and signature set is valuable for prediction of drug toxicities.


Assuntos
Antineoplásicos , Proteômica , Antineoplásicos/farmacologia , Cardiotoxicidade , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Transcriptoma
5.
Nat Commun ; 11(1): 4809, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968055

RESUMO

Kinase inhibitors (KIs) represent an important class of anti-cancer drugs. Although cardiotoxicity is a serious adverse event associated with several KIs, the reasons remain poorly understood, and its prediction remains challenging. We obtain transcriptional profiles of human heart-derived primary cardiomyocyte like cell lines treated with a panel of 26 FDA-approved KIs and classify their effects on subcellular pathways and processes. Individual cardiotoxicity patient reports for these KIs, obtained from the FDA Adverse Event Reporting System, are used to compute relative risk scores. These are then combined with the cell line-derived transcriptomic datasets through elastic net regression analysis to identify a gene signature that can predict risk of cardiotoxicity. We also identify relationships between cardiotoxicity risk and structural/binding profiles of individual KIs. We conclude that acute transcriptomic changes in cell-based assays combined with drug substructures are predictive of KI-induced cardiotoxicity risk, and that they can be informative for future drug discovery.


Assuntos
Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Perfilação da Expressão Gênica/métodos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Transcriptoma , Antineoplásicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Linhagem Celular , Relação Dose-Resposta a Droga , Aprovação de Drogas , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Análise de Regressão , Medição de Risco , Fatores de Risco , Alinhamento de Sequência , Estados Unidos , United States Food and Drug Administration
6.
J Mol Cell Cardiol ; 143: 96-106, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32330487

RESUMO

In ventricular myocytes, stimulation of ß-adrenergic receptors activates critical cardiac signaling pathways, leading to shorter action potentials and increased contraction strength during the "fight-or-flight" response. These changes primarily result, at the cellular level, from the coordinated phosphorylation of multiple targets by protein kinase A. Although mathematical models of the intracellular signaling downstream of ß-adrenergic receptor activation have previously been described, only a limited number of studies have explored quantitative interactions between intracellular signaling and electrophysiology in human ventricular myocytes. Accordingly, our objective was to develop an integrative mathematical model of ß-adrenergic receptor signaling, electrophysiology, and intracellular calcium (Ca2+) handling in the healthy human ventricular myocyte. We combined published mathematical models of intracellular signaling and electrophysiology, then calibrated the model results against voltage clamp data and physiological changes occurring after stimulation of ß-adrenergic receptors with isoproterenol. We subsequently: (1) explored how molecular variability in different categories of model parameters translated into phenotypic variability; (2) identified the most important parameters determining physiological cellular outputs in the model before and after ß-adrenergic receptor stimulation; and (3) investigated which molecular level alterations can produce a phenotype indicative of heart failure with preserved ejection fraction (HFpEF). Major results included: (1) variability in parameters that controlled intracellular signaling caused qualitatively different behavior than variability in parameters controlling ion transport pathways; (2) the most important model parameters determining action potential duration and intracellular Ca2+ transient amplitude were generally consistent before and after ß-adrenergic receptor stimulation, except for a shift in the importance of K+ currents in determining action potential duration; and (3) decreased Ca2+ uptake into the sarcoplasmic reticulum, increased Ca2+ extrusion through Na+/Ca2+ exchanger and decreased Ca2+ leak from the sarcoplasmic reticulum may contribute to HFpEF. Overall, this study provided novel insight into the phenotypic consequences of molecular variability, and our integrated model may be useful in the design and interpretation of future experimental studies of interactions between ß-adrenergic signaling and cellular physiology in human ventricular myocytes.


Assuntos
Fenômenos Eletrofisiológicos , Ventrículos do Coração/metabolismo , Modelos Biológicos , Receptores Adrenérgicos/metabolismo , Transdução de Sinais , Função Ventricular , Biomarcadores , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Suscetibilidade a Doenças , Humanos , Modelos Cardiovasculares , Fenótipo , Fosforilação
7.
J Mol Cell Cardiol ; 144: 1-11, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339567

RESUMO

BACKGROUND: Genetic variants in SCN5A can result in channelopathies such as the long QT syndrome type 3 (LQT3), but the therapeutic response to Na+ channel blockers can vary. We previously reported a case of an infant with malignant LQT3 and a missense Q1475P SCN5A variant, who was effectively treated with phenytoin, but only partially with mexiletine. Here, we functionally characterized this variant and investigated possible mechanisms for the differential drug actions. METHODS: Wild-type or mutant Nav1.5 cDNAs were examined in transfected HEK293 cells with patch clamping and biochemical assays. We used computational modeling to provide insights into altered channel kinetics and to predict effects on the action potential. RESULTS: The Q1475P variant in Nav1.5 reduced the current density and channel surface expression, characteristic of a trafficking defect. The variant also led to positive shifts in the voltage dependence of steady-state activation and inactivation, faster inactivation and recovery from inactivation, and increased the "late" Na+ current. Simulations of Nav1.5 gating with a 9-state Markov model suggested that transitions from inactivated to closed states were accelerated in Q1475P channels, leading to accumulation of channels in non-inactivated closed states. Simulations with a human ventricular myocyte model predicted action potential prolongation with Q1475P, compared with wild type, channels. Patch clamp data showed that mexiletine and phenytoin similarly rescued some of the gating defects. Chronic incubation with mexiletine, but not phenytoin, rescued the Nav1.5-Q1475P trafficking defect, thus increasing mutant channel expression. CONCLUSIONS: The gain-of-function effects of Nav1.5-Q1475P predominate to cause a malignant long QT phenotype. Phenytoin partially corrects the gating defect without restoring surface expression of the mutant channel, whereas mexiletine restores surface expression of the mutant channel, which may explain the lack of efficacy of mexiletine when compared to phenytoin. Our data makes a case for experimental studies before embarking on a one-for-all therapy of arrhythmias.


Assuntos
Doença do Sistema de Condução Cardíaco/etiologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Síndrome do QT Longo/etiologia , Fenitoína/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Substituição de Aminoácidos , Antiarrítmicos/farmacologia , Doença do Sistema de Condução Cardíaco/diagnóstico , Doença do Sistema de Condução Cardíaco/tratamento farmacológico , Doença do Sistema de Condução Cardíaco/metabolismo , Células Cultivadas , Mutação com Ganho de Função , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Modelos Biológicos , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Fenitoína/uso terapêutico
8.
Cell Syst ; 6(1): 13-24, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29199020

RESUMO

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.


Assuntos
Catalogação/métodos , Biologia de Sistemas/métodos , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos/normas , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Humanos , Armazenamento e Recuperação da Informação/métodos , Programas Nacionais de Saúde , National Institutes of Health (U.S.)/normas , Transcriptoma , Estados Unidos
9.
Front Physiol ; 8: 651, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28951721

RESUMO

Tyrosine kinase inhibitors (TKIs) are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation-contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP) models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs.

10.
Circ Res ; 121(4): 411-423, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28642329

RESUMO

RATIONALE: Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved. OBJECTIVE: The objective is to better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches. METHODS AND RESULTS: Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/sarcoendoplasmic reticulum calcium-ATPase activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated that hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased ≈4-fold compared with non-hMSC-supplemented controls during physiological 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential proarrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosome-enriched, but not exosome-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT-developed force and expression of calcium-handling genes (eg, SERCA2a, L-type calcium channel). CONCLUSIONS: Collectively, this integrated experimental and computational study helps unravel relative hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity, and provides novel insight into the role of exosomes in hMSC paracrine-mediated effects on contractility.


Assuntos
Simulação por Computador , Acoplamento Excitação-Contração/fisiologia , Células-Tronco Mesenquimais/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Comunicação Parácrina/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Camundongos , Ratos
11.
Oncotarget ; 7(44): 71620-71634, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690302

RESUMO

Triple negative breast cancers (TNBCs) are highly heterogeneous and aggressive without targeted treatment. Here, we aim to systematically dissect TNBCs from a prognosis point of view by building a subnetwork atlas for TNBC prognosis through integrating multi-dimensional cancer genomics data from The Cancer Genome Atlas (TCGA) project and the interactome data from three different interaction networks. The subnetworks are represented as the protein-protein interaction modules perturbed by multiple genetic and epigenetic interacting mechanisms contributing to patient survival. Predictive power of these subnetwork-derived prognostic models is evaluated using Monte Carlo cross-validation and the concordance index (C-index). We uncover subnetwork biomarkers of low oncogenic GTPase activity, low ubiquitin/proteasome degradation, effective protection from oxidative damage, and tightly immune response are linked to better prognosis. Such a systematic approach to integrate massive amount of cancer genomics data into clinical practice for TNBC prognosis can effectively dissect the molecular mechanisms underlying TNBC patient outcomes and provide potential opportunities to optimize treatment and develop therapeutics.


Assuntos
Mapas de Interação de Proteínas , Neoplasias de Mama Triplo Negativas/mortalidade , Biomarcadores Tumorais , Feminino , Genômica , Humanos , Método de Monte Carlo , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia
12.
Brief Bioinform ; 17(6): 1044-1059, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27559151

RESUMO

The Cancer Genome Atlas project has generated multi-dimensional and highly integrated genomic data from a large number of patient samples with detailed clinical records across many cancer types, but it remains unclear how to best integrate the massive amount of genomic data into clinical practice. We report here our methodology to build a multi-dimensional subnetwork atlas for cancer prognosis to better investigate the potential impact of multiple genetic and epigenetic (gene expression, copy number variation, microRNA expression and DNA methylation) changes on the molecular states of networks that in turn affects complex cancer survivorship. We uncover an average of 38 novel subnetworks in the protein-protein interaction network that correlate with prognosis across four prominent cancer types. The clinical utility of these subnetwork biomarkers was further evaluated by prognostic impact evaluation, functional enrichment analysis, drug target annotation, tumor stratification and independent validation. Some pathways including the dynactin, cohesion and pyruvate dehydrogenase-related subnetworks are identified as promising new targets for therapy in specific cancer types. In conclusion, this integrative analysis of existing protein interactome and cancer genomics data allows us to systematically dissect the molecular mechanisms that underlie unexpected outcomes for cancer, which could be used to better understand and predict clinical outcomes, optimize treatment and to provide new opportunities for developing therapeutics related to the subnetworks identified.


Assuntos
Neoplasias , Variações do Número de Cópias de DNA , Metilação de DNA , Genômica , Humanos , Prognóstico
13.
Stem Cell Reports ; 7(3): 355-369, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27569062

RESUMO

Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS), whereby 40% of patients develop hypertrophic cardiomyopathy (HCM). As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC) model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα(+)/CD90(-) cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα(-)/CD90(+) cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor ß (TGFß) paracrine signaling. Inhibition of TGFß or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFß inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Biomarcadores , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Separação Celular , Reprogramação Celular , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Comunicação Parácrina , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas ras/metabolismo
14.
PLoS Comput Biol ; 12(7): e1005014, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27454812

RESUMO

Human mesenchymal stem cell (hMSC) delivery has demonstrated promise in preclinical and clinical trials for myocardial infarction therapy; however, broad acceptance is hindered by limited understanding of hMSC-human cardiomyocyte (hCM) interactions. To better understand the electrophysiological consequences of direct heterocellular connections between hMSCs and hCMs, three original mathematical models were developed, representing an experimentally verified triad of hMSC families with distinct functional ion channel currents. The arrhythmogenic risk of such direct electrical interactions in the setting of healthy adult myocardium was predicted by coupling and fusing these hMSC models to the published ten Tusscher midcardial hCM model. Substantial variations in action potential waveform-such as decreased action potential duration (APD) and plateau height-were found when hCMs were coupled to the two hMSC models expressing functional delayed rectifier-like human ether à-go-go K+ channel 1 (hEAG1); the effects were exacerbated for fused hMSC-hCM hybrid cells. The third family of hMSCs (Type C), absent of hEAG1 activity, led to smaller single-cell action potential alterations during coupling and fusion, translating to longer tissue-level mean action potential wavelength. In a simulated 2-D monolayer of cardiac tissue, re-entry vulnerability with low (5%) hMSC insertion was approximately eight-fold lower with Type C hMSCs compared to hEAG1-functional hMSCs. A 20% decrease in APD dispersion by Type C hMSCs compared to hEAG1-active hMSCs supports the claim of reduced arrhythmogenic potential of this cell type with low hMSC insertion. However, at moderate (15%) and high (25%) hMSC insertion, the vulnerable window increased independent of hMSC type. In summary, this study provides novel electrophysiological models of hMSCs, predicts possible arrhythmogenic effects of hMSCs when directly coupled to healthy hCMs, and proposes that isolating a subset of hMSCs absent of hEAG1 activity may offer increased safety as a cell delivery cardiotherapy at low levels of hMSC-hCM coupling.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Biologia Computacional , Humanos
15.
Circulation ; 132(4): 230-40, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25995318

RESUMO

BACKGROUND: Emerging clinical evidence demonstrates high prevalence of QTc prolongation and complex ventricular arrhythmias in patients with anti-Ro antibody (anti-Ro Ab)-positive autoimmune diseases. We tested the hypothesis that anti-Ro Abs target the HERG (human ether-a-go-go-related gene) K(+) channel, which conducts the rapidly activating delayed K(+) current, IKr, thereby causing delayed repolarization seen as QT interval prolongation on the ECG. METHODS AND RESULTS: Anti-Ro Ab-positive sera, purified IgG, and affinity-purified anti-52kDa Ro Abs from patients with autoimmune diseases and QTc prolongation were tested on IKr using HEK293 cells expressing HERG channel and native cardiac myocytes. Electrophysiological and biochemical data demonstrate that anti-Ro Abs inhibit IKr to prolong action potential duration by directly binding to the HERG channel protein. The 52-kDa Ro antigen-immunized guinea pigs showed QTc prolongation on ECG after developing high titers of anti-Ro Abs, which inhibited native IKr and cross-reacted with guinea pig ERG channel. CONCLUSIONS: The data establish that anti-Ro Abs from patients with autoimmune diseases inhibit IKr by cross-reacting with the HERG channel likely at the pore region where homology between anti-52-kDa Ro antigen and HERG channel is present. The animal model of autoimmune-associated QTc prolongation is the first to provide strong evidence for a pathogenic role of anti-Ro Abs in the development of QTc prolongation. It is proposed that adult patients with anti-Ro Abs may benefit from routine ECG screening and that those with QTc prolongation should receive counseling about drugs that may increase the risk for life-threatening arrhythmias.


Assuntos
Anticorpos Anti-Idiotípicos/fisiologia , Doenças Autoimunes/etiologia , Doenças Autoimunes/fisiopatologia , Síndrome do QT Longo/etiologia , Síndrome do QT Longo/fisiopatologia , Ribonucleoproteínas/imunologia , Adulto , Idoso , Animais , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/farmacologia , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/fisiopatologia , Doenças Autoimunes/imunologia , Células Cultivadas , Modelos Animais de Doenças , Canal de Potássio ERG1 , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Cobaias , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Síndrome do QT Longo/imunologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Risco
16.
J Physiol ; 593(6): 1495-507, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25772298

RESUMO

KEY POINTS: Refractoriness of calcium release in heart cells is altered in several disease states, but the physiological mechanisms that regulate this process are incompletely understood. We examined refractoriness of calcium release in mouse ventricular myocytes and investigated how activation of different intracellular signalling pathways influenced this process. We found that refractoriness of calcium release is abbreviated by stimulation of the 'fight-or-flight' response, and that simultaneous activation of multiple intracellular signalling pathways contributes to this response. Data obtained under several conditions at the subcellular, microscopic level were consistent with results obtained at the cellular level. The results provide insight into regulation of cardiac calcium release and how alterations to this process may increase arrhythmia risk under different conditions. ABSTRACT: Time-dependent refractoriness of calcium (Ca(2+)) release in cardiac myocytes is an important factor in determining whether pro-arrhythmic release patterns develop. At the subcellular level of the Ca(2+) spark, recent studies have suggested that recovery of spark amplitude is controlled by local sarcoplasmic reticulum (SR) refilling whereas refractoriness of spark triggering depends on both refilling and the sensitivity of the ryanodine receptor (RyR) release channels that produce sparks. Here we studied regulation of Ca(2+) spark refractoriness in mouse ventricular myocytes by examining how ß-adrenergic stimulation influenced sequences of Ca(2+) sparks originating from individual RyR clusters. Our protocol allowed us to separately measure recovery of spark amplitude and delays between successive sparks, and data were interpreted quantitatively through simulations with a stochastic mathematical model. We found that, compared with spark sequences measured under control conditions: (1) ß-adrenergic stimulation with isoproterenol (isoprenaline) accelerated spark amplitude recovery and decreased spark-to-spark delays; (2) activating protein kinase A (PKA) with forskolin accelerated amplitude recovery but did not affect spark-to-spark delays; (3) inhibiting PKA with H89 retarded amplitude recovery and increased spark-to-spark delays; (4) preventing phosphorylation of the RyR at serine 2808 with a knock-in mouse prevented the decrease in spark-to-spark delays seen with ß-adrenergic stimulation; (5) inhibiting either PKA or Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) during ß-adrenergic stimulation prevented the decrease in spark-to-spark delays seen without inhibition. The results suggest that activation of either PKA or CaMKII is sufficient to speed SR refilling, but activation of both kinases appears necessary to observe increased RyR sensitivity. The data provide novel insight into ß-adrenergic regulation of Ca(2+) release refractoriness in mouse myocytes.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ventrículos do Coração/citologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
17.
PLoS Comput Biol ; 10(3): e1003543, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675446

RESUMO

Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP). The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs.


Assuntos
Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Potenciais de Ação , Animais , Arritmias Cardíacas/patologia , Biologia Computacional , Simulação por Computador , Cães , Cobaias , Coração/fisiologia , Humanos , Modelos Lineares , Modelos Biológicos , Reprodutibilidade dos Testes , ATPase Trocadora de Sódio-Potássio/química , Especificidade da Espécie , Função Ventricular/fisiologia
18.
Cell Res ; 24(3): 278-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24481529

RESUMO

miRNAs are an important class of regulators that play roles in cellular homeostasis and disease. Muscle-specific miRNAs, miR-1-1 and miR-1-2, have been found to play important roles in regulating cell proliferation and cardiac function. Redundancy between miR-1-1 and miR-1-2 has previously impeded a full understanding of their roles in vivo. To determine how miR-1s regulate cardiac function in vivo, we generated mice lacking miR-1-1 and miR-1-2 without affecting nearby genes. miR-1 double knockout (miR-1 dKO) mice were viable and not significantly different from wild-type controls at postnatal day 2.5. Thereafter, all miR-1 dKO mice developed dilated cardiomyopathy (DCM) and died before P17. Massively parallel sequencing showed that a large portion of upregulated genes after deletion of miR-1s is associated with the cardiac fetal gene program including cell proliferation, glycolysis, glycogenesis, and fetal sarcomere-associated genes. Consistent with gene profiling, glycogen content and glycolytic rates were significantly increased in miR-1 dKO mice. Estrogen-related Receptor ß (Errß) was identified as a direct target of miR-1, which can regulate glycolysis, glycogenesis, and the expression of sarcomeric proteins. Cardiac-specific overexpression of Errß led to glycogen storage, cardiac dilation, and sudden cardiac death around 3-4 weeks of age. We conclude that miR-1 and its primary target Errß act together to regulate the transition from prenatal to neonatal stages by repressing the cardiac fetal gene program. Loss of this regulation leads to a neonatal DCM.


Assuntos
MicroRNAs/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/mortalidade , Proliferação de Células , Células Cultivadas , Metabolismo Energético , Glicogênio/metabolismo , Glicólise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , Miocárdio/patologia , Miócitos Cardíacos/citologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Sarcômeros/metabolismo , Alinhamento de Sequência
19.
Am J Physiol Heart Circ Physiol ; 303(3): H353-67, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22610174

RESUMO

Diabetic cardiomyopathy is characterized, in part, by calcium handling imbalances associated with ventricular dysfunction. The cardiac Na(+)/Ca(2+) exchanger 1 (NCX1) has been implicated as a compensatory mechanism in response to reduced contractility in the heart; however, its role in diabetic cardiomyopathy remains unknown. We aimed to fully characterize the Akita(ins2) murine model of type 1 diabetes through assessing cardiac function and NCX1 regulation. The CXCL12/CXCR4 chemokine axis is well described in its cardioprotective effects via progenitor cell recruitment postacute myocardial infarction; however, it also functions in regulating calcium dependent processes in the cardiac myocyte. We therefore investigated the potential impact of CXCR4 in diabetic cardiomyopathy. Cardiac performance in the Akita(ins2) mouse was monitored using echocardiography and in vivo pressure-volume analysis. The Akita(ins2) mouse is protected against ventricular systolic failure evident at both 5 and 12 mo of age. However, the preserved contractility was associated with a decreased sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a)/phospholamban ratio and increased NCX1 content. Direct myocardial injection of adenovirus encoding anti-sense NCX1 significantly decreased NCX1 expression and induced systolic failure in the Akita(ins2) mouse. CXCL12 and CXCR4 were both upregulated in the Akita(ins2) heart, along with an increase in IκB-α and NF-κB p65 phosphorylation. We demonstrated that CXCR4 activation upregulates NCX1 expression through a NF-κB-dependent signaling pathway in the cardiac myocyte. In conclusion, the Akita(ins2) type 1 diabetic model is protected against systolic failure due to increased NCX1 expression. In addition, our studies reveal a novel role of CXCR4 in the diabetic heart by regulating NCX1 expression via a NF-κB-dependent mechanism.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Cardiomiopatias Diabéticas/etiologia , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Receptores CXCR4/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Disfunção Ventricular Esquerda/prevenção & controle , Potenciais de Ação , Animais , Cálcio/metabolismo , Células Cultivadas , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/prevenção & controle , Diástole , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hemodinâmica , Insulina/genética , Masculino , Camundongos , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Trocador de Sódio e Cálcio/genética , Sístole , Ultrassonografia , Regulação para Cima , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
20.
Circ Arrhythm Electrophysiol ; 4(6): 926-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21984445

RESUMO

Background- The specialized cardiac conduction system (CCS) expresses a unique complement of ion channels that confer a specific electrophysiological profile. ATP-sensitive potassium (K(ATP)) channels in these myocytes have not been systemically investigated. Methods and Results- We recorded K(ATP) channels in isolated CCS myocytes using Cntn2-EGFP reporter mice. The CCS K(ATP) channels were less sensitive to inhibitory cytosolic ATP compared with ventricular channels and more strongly activated by MgADP. They also had a smaller slope conductance. The 2 types of channels had similar intraburst open and closed times, but the CCS K(ATP) channel had a prolonged interburst closed time. CCS K(ATP) channels were strongly activated by diazoxide and less by levcromakalim, whereas the ventricular K(ATP) channel had a reverse pharmacological profile. CCS myocytes express elevated levels of Kir6.1 but reduced Kir6.2 and SUR2A mRNA compared with ventricular myocytes (SUR1 expression was negligible). SUR2B mRNA expression was higher in CCS myocytes relative to SUR2A. Canine Purkinje fibers expressed higher levels of Kir6.1 and SUR2B protein relative to the ventricle. Numeric simulation predicts a high sensitivity of the Purkinje action potential to changes in ATP:ADP ratio. Cardiac conduction time was prolonged by low-flow ischemia in isolated, perfused mouse hearts, which was prevented by glibenclamide. Conclusions- These data imply a differential electrophysiological response (and possible contribution to arrhythmias) of the ventricular CCS to K(ATP) channel opening during periods of ischemia.


Assuntos
Arritmias Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Canais KATP/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Potenciais de Ação , Trifosfato de Adenosina/metabolismo , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Simulação por Computador , Contactina 2/genética , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Canais KATP/efeitos dos fármacos , Canais KATP/genética , Cinética , Camundongos , Camundongos Transgênicos , Modelos Cardiovasculares , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Análise Numérica Assistida por Computador , Técnicas de Patch-Clamp , Perfusão , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ramos Subendocárdicos/efeitos dos fármacos , Ramos Subendocárdicos/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Droga/metabolismo , Receptores de Sulfonilureias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA