Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 9(419): rs1, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980443

RESUMO

Mapping the in vivo distribution of endogenous oxidants in animal tissues is of substantial biomedical interest. Numerous health-related factors, including diet, physical activity, infection, aging, toxins, or pharmacological intervention, may cause redox changes. Tools are needed to pinpoint redox state changes to particular organs, tissues, cell types, and subcellular organelles. We describe a procedure that preserves the in vivo redox state of genetically encoded redox biosensors within histological tissue sections, thus providing "redox maps" for any tissue and comparison of interest. We demonstrate the utility of the technique by visualizing endogenous redox differences and changes in the context of tumor growth, inflammation, embryonic development, and nutrient starvation.


Assuntos
Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Transgenes , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Sondas Moleculares/genética , Oxirredução
2.
Nature ; 520(7548): 549-52, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25707806

RESUMO

Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.


Assuntos
Ciclo Celular , Dano ao DNA , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Medula Óssea/patologia , Morte Celular , Proliferação de Células , Anemia de Fanconi/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
3.
Nat Chem Biol ; 11(1): 64-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25402766

RESUMO

Hydrogen peroxide (H(2)O(2)) acts as a signaling messenger by oxidatively modifying distinct cysteinyl thiols in distinct target proteins. However, it remains unclear how redox-regulated proteins, which often have low intrinsic reactivity towards H(2)O(2) (k(app) ∼1-10 M(-1) s(-1)), can be specifically and efficiently oxidized by H(2)O(2). Moreover, cellular thiol peroxidases, which are highly abundant and efficient H(2)O(2) scavengers, should effectively eliminate virtually all of the H(2)O(2) produced in the cell. Here, we show that the thiol peroxidase peroxiredoxin-2 (Prx2), one of the most H(2)O(2)-reactive proteins in the cell (k(app) ∼10(7)-10(8) M(-1) s(-1)), acts as a H(2)O(2) signal receptor and transmitter in transcription factor redox regulation. Prx2 forms a redox relay with the transcription factor STAT3 in which oxidative equivalents flow from Prx2 to STAT3. The redox relay generates disulfide-linked STAT3 oligomers with attenuated transcriptional activity. Cytokine-induced STAT3 signaling is accompanied by Prx2 and STAT3 oxidation and is modulated by Prx2 expression levels.


Assuntos
Peróxido de Hidrogênio/farmacologia , Peroxirredoxinas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , DNA/metabolismo , Células HEK293 , Humanos , Interleucina-6/farmacologia , Oxirredução
4.
Free Radic Biol Med ; 51(11): 1943-51, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21964034

RESUMO

Redox biochemistry plays an important role in a wide range of cellular events. However, investigation of cellular redox processes is complicated by the large number of cellular redox couples, which are often not in equilibrium with one another and can vary significantly between subcellular compartments and cell types. Further, it is becoming increasingly clear that different redox systems convey different biological information; thus it makes little sense to talk of an overall "cellular redox state". To gain a more differentiated understanding of cellular redox biology, quantitative, redox couple-specific, in vivo measurements are necessary. Unfortunately our ability to investigate specific redox couples or redox-reactive molecules with the necessary degree of spatiotemporal resolution is very limited. The development of genetically encoded redox biosensors offers a promising new way to investigate redox biology. Recently developed redox-sensitive green fluorescent proteins (roGFPs), genetically fused to redox-active proteins, allow rapid equilibration of the roGFP moiety with a specific redox couple. Two probes based on this principle are now available: Grx1-roGFP2 for the measurement of glutathione redox potential (E(GSH)) and roGFP2-Orp1 for measuring changes in H(2)O(2) concentration. Here we provide a detailed protocol for the use of these probes in both yeast and mammalian systems using either plate-reader- or microscopy-based measurements.


Assuntos
Glutationa/análise , Proteínas de Fluorescência Verde/química , Peróxido de Hidrogênio/análise , Sondas Moleculares/química , Animais , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Sondas Moleculares/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA