Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(6): 1517-1538, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31882541

RESUMO

Hsp104 is a hexameric AAA+ ring translocase, which drives protein disaggregation in nonmetazoan eukaryotes. Cryo-EM structures of Hsp104 have suggested potential mechanisms of substrate translocation, but precisely how Hsp104 hexamers disaggregate proteins remains incompletely understood. Here, we employed synchrotron X-ray footprinting to probe the solution-state structures of Hsp104 monomers in the absence of nucleotide and Hsp104 hexamers in the presence of ADP or ATPγS (adenosine 5'-O-(thiotriphosphate)). Comparing side-chain solvent accessibilities between these three states illuminated aspects of Hsp104 structure and guided design of Hsp104 variants to probe the disaggregase mechanism in vitro and in vivo We established that Hsp104 hexamers switch from a more-solvated state in ADP to a less-solvated state in ATPγS, consistent with switching from an open spiral to a closed ring visualized by cryo-EM. We pinpointed critical N-terminal domain (NTD), NTD-nucleotide-binding domain 1 (NBD1) linker, NBD1, and middle domain (MD) residues that enable intrinsic disaggregase activity and Hsp70 collaboration. We uncovered NTD residues in the loop between helices A1 and A2 that can be substituted to enhance disaggregase activity. We elucidated a novel potentiated Hsp104 MD variant, Hsp104-RYD, which suppresses α-synuclein, fused in sarcoma (FUS), and TDP-43 toxicity. We disambiguated a secondary pore-loop in NBD1, which collaborates with the NTD and NBD1 tyrosine-bearing pore-loop to drive protein disaggregation. Finally, we defined Leu-601 in NBD2 as crucial for Hsp104 hexamerization. Collectively, our findings unveil new facets of Hsp104 structure and mechanism. They also connect regions undergoing large changes in solvation to functionality, which could have profound implications for protein engineering.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Agregados Proteicos , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Síncrotrons , Raios X
2.
Sci Rep ; 5: 17105, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26597678

RESUMO

The future of treating inherited and acquired genetic diseases will be defined by our ability to introduce transgenes into cells and restore normal physiology. Here we describe an autogenous transgene regulatory system (ARES), based on the bacterial lac repressor, and demonstrate its utility for controlling the expression of a transgene in bacteria, eukaryotic cells, and in the retina of mice. This ARES system is inducible by the small non-pharmacologic molecule, Isopropyl ß-D-1-thiogalactopyranoside (IPTG) that has no off-target effects in mammals. Following subretinal injection of an adeno-associated virus (AAV) vector encoding ARES, luciferase expression can be reversibly controlled in the murine retina by oral delivery of IPTG over three induction-repression cycles. The ability to induce transgene expression repeatedly via administration of an oral inducer in vivo, suggests that this type of regulatory system holds great promise for applications in human gene therapy.


Assuntos
Expressão Gênica , Terapia Genética , Ativação Transcricional/efeitos dos fármacos , Administração Oral , Animais , Dependovirus/genética , Genes Reporter , Células HEK293 , Humanos , Isopropiltiogalactosídeo/administração & dosagem , Luciferases/biossíntese , Luciferases/genética , Camundongos , Retina/metabolismo , Transgenes
3.
Mol Cell ; 57(5): 836-849, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25620563

RESUMO

The structural basis by which Hsp104 dissolves disordered aggregates and prions is unknown. A single subunit within the Hsp104 hexamer can solubilize disordered aggregates, whereas prion dissolution requires collaboration by multiple Hsp104 subunits. Here, we establish that the poorly understood Hsp104 N-terminal domain (NTD) enables this operational plasticity. Hsp104 lacking the NTD (Hsp104(ΔN)) dissolves disordered aggregates but cannot dissolve prions or be potentiated by activating mutations. We define how Hsp104(ΔN) invariably stimulates Sup35 prionogenesis by fragmenting prions without solubilizing Sup35, whereas Hsp104 couples Sup35 prion fragmentation and dissolution. Volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (hydrolysis transition state mimic), and ADP via small-angle X-ray scattering revealed a peristaltic pumping motion upon ATP hydrolysis, which drives directional substrate translocation through the central Hsp104 channel and is profoundly altered in Hsp104(ΔN). We establish that the Hsp104 NTD enables cooperative substrate translocation, which is critical for prion dissolution and potentiated disaggregase activity.


Assuntos
Proteínas de Choque Térmico/química , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Moleculares , Mutação , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Cell ; 151(4): 778-793, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23141537

RESUMO

It is not understood how Hsp104, a hexameric AAA+ ATPase from yeast, disaggregates diverse structures, including stress-induced aggregates, prions, and α-synuclein conformers connected to Parkinson disease. Here, we establish that Hsp104 hexamers adapt different mechanisms of intersubunit collaboration to disaggregate stress-induced aggregates versus amyloid. To resolve disordered aggregates, Hsp104 subunits collaborate noncooperatively via probabilistic substrate binding and ATP hydrolysis. To disaggregate amyloid, several subunits cooperatively engage substrate and hydrolyze ATP. Importantly, Hsp104 variants with impaired intersubunit communication dissolve disordered aggregates, but not amyloid. Unexpectedly, prokaryotic ClpB subunits collaborate differently than Hsp104 and couple probabilistic substrate binding to cooperative ATP hydrolysis, which enhances disordered aggregate dissolution but sensitizes ClpB to inhibition and diminishes amyloid disaggregation. Finally, we establish that Hsp104 hexamers deploy more subunits to disaggregate Sup35 prion strains with more stable "cross-ß" cores. Thus, operational plasticity enables Hsp104 to robustly dissolve amyloid and nonamyloid clients, which impose distinct mechanical demands.


Assuntos
Amiloide/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Endopeptidase Clp , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Doença de Parkinson/metabolismo , Príons/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA