Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Japonês | MEDLINE | ID: mdl-31434844

RESUMO

Commissioning of a linear accelerator (Linac) and treatment planning systems (RTPs) for clinical use is complex and time-consuming, typically 3-4 months in total. However, based on clinical needs and economics, hospitals desire early clinical starts for patients, and various studies have been conducted for shortening the preparation period. One of the methods to shorten the period is using golden beam data (GBD). The purpose of this study was to shorten the commissioning period without reducing accuracy and to simplify commissioning works while improving safety. We conducted commissioning of the RTPs before installing the Linac using GBD, and carried out verification immediately after the acceptance test. We used TrueBeam STx (Varian Medical Systems) and Eclipse (ver. 13.7, Varian Medical Systems) for RTPs and anisotropic analysis algorithm (AAA) and AcurosXB (AXB) for calculation algorithms. The difference between GBD and the measured beam data was 0.0 ± 0.2% [percentage depth dose (PDDs) ] and -0.1 ± 0.2% (Profiles) with X-ray, and -1.2 ± 1.3% (PDDs) with electrons. The difference between the calculated dose and the measured dose was 0.1 ± 0.3% (AAA) and 0.0 ± 0.3% (AXB) under homogeneous conditions, and 0.7 ± 1.4% (AAA) and 0.6 ± 1.1% (AXB) under heterogeneous conditions. We took 43 days from the end of the acceptance test to the start of clinical use. We found that the preparation period for clinical use can be shortened without reducing the accuracy, by thinning out the number of measurement items using GBD.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Algoritmos , Elétrons , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
2.
J Biochem ; 161(4): 389-398, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003434

RESUMO

l-Methionine decarboxylase (MetDC) from Streptomyces sp. 590 depends on pyridoxal 5'-phosphate and catalyzes the non-oxidative decarboxylation of l-methionine to produce 3-methylthiopropylamine and carbon dioxide. MetDC gene (mdc) was determined to consist of 1,674 bp encoding 557 amino acids, and the amino acid sequence is similar to that of l-histidine decarboxylases and l-valine decarboxylases from Streptomyces sp. strains. The mdc gene was cloned and recombinant MetDC was heterologously expressed by Escherichia coli. The purification of recombinant MetDC was carried out by DEAE-Toyopearl and Ni-NTA agarose column chromatography. The recombinant enzyme was homodimeric with a molecular mass of 61,000 Da and showed optimal activity between 45 to 55 °C and at pH 6.6, and the stability below 30 °C and between pH 4.6 to 7.0. l-Methionine and l-norleucine were good substrates for MetDC. The Michaelis constants for l-methionine and l-norleucine were 30 and 73 mM, respectively. The recombinant MetDC (0.50 U/ml) severely inhibited growth of human tumour cells A431 (epidermoid ovarian carcinoma cell line) and MDA-MB-231 (breast cancer cell line), however showed relatively low cytotoxicity for human normal cell NHDF-Neo (dermal fibroblast cell line from neonatal foreskin). This study revealed the properties of the gene and the protein sequence of MetDC for the first time.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Proteínas Recombinantes/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Dióxido de Carbono/metabolismo , Carboxiliases/classificação , Carboxiliases/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metionina/metabolismo , Peso Molecular , Filogenia , Propilaminas/metabolismo , Multimerização Proteica , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Espectrofotometria , Streptomyces/genética , Especificidade por Substrato , Temperatura
3.
Chem Rec ; 5(6): 352-66, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16278834

RESUMO

Poly-gamma-glutamic acid (gamma-PGA) is a very promising biodegradable polymer that is produced by Bacillus subtilis. Gamma-PGA is water-soluble, anionic, biodegradable, and edible. This paper reviews the production of a strain of gamma-PGA and recent developments with respect to applications in terms of Ca absorption, moisturizing properties, gamma-PGA conjugation, super absorbent polymer, and so on. Our recent research shows that gamma-PGA can be used as an immune-stimulating and anti-tumor agent, especially at high molecular weight.


Assuntos
Produtos Biológicos/síntese química , Biopolímeros/química , Ácido Poliglutâmico/análogos & derivados , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/química , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Biopolímeros/administração & dosagem , Humanos , Peso Molecular , Ácido Poliglutâmico/administração & dosagem , Ácido Poliglutâmico/síntese química , Ácido Poliglutâmico/química
4.
Syst Appl Microbiol ; 28(4): 310-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15997703

RESUMO

We described the polyphasic characterization of the psychrotolerant isolated from Antarctic seawater. The strain was closely related to Flavobacterium hydatis, F. pectinovorum, and F. saccharophilum on the basis of the 16S rDNA sequence analysis. However, DNA-DNA hybridization experiments showed that the DNA-similarities between strain KUC-1T and the reference strains of Flavobacterium were less than 30%. Therefore, we can definite a new species of Flavobacterium phylogenetically, and strain KUC-1T can be considered to be a new species of Flavobacterium. i.e. F. frigidimaris (KUC-1T: JCM 12218T and DSM 15937T; mol% G+C of DNA of the type strain is 34.5 mol%). Useful phenotypical features for discrimination of F. frigidimaris from other Flavobacterium species, such as a resistance to NaCl, optimum growth temperature, and cellular fatty acid composition, were also determined.


Assuntos
Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Água do Mar/microbiologia , Regiões Antárticas , Composição de Bases , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Ácidos Graxos/análise , Flavobacterium/citologia , Flavobacterium/fisiologia , Genes de RNAr , Inibidores do Crescimento/farmacologia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia , Temperatura , Microbiologia da Água
5.
Anal Biochem ; 327(2): 233-40, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15051540

RESUMO

L-Methionine gamma-lyase (EC 4.4.1.11) is a pyridoxal 5'-phosphate-dependent multifunctional enzyme. Measuring the initial velocity of alpha-ketobutyrate production by alpha,gamma-elimination of L-methionine catalyzed by L-methionine gamma-lyase is not very feasible, because the enzyme simultaneously catalyzes both gamma-replacement and alpha,gamma-elimination. To develop an accurate enzyme assay, the comprehensive enzyme kinetics needed to be elucidated by progress curve analysis on the basis of a reaction model for conversion of L-methionine to alpha-ketobutyrate, methanethiol, and ammonia with pyridoxal 5'-phosphate as a cofactor. Kinetic parameters were determined by linear transformation using an approximation of a Maclaurin series from the whole velocity of alpha-ketobutyrate production including alpha,gamma-elimination and gamma-replacement. The significance of gamma-replacement was revealed both theoretically and practically by the kinetic analysis. The enzyme activity was standardized and represented as the Vmax value taking into consideration gamma-replacement in the presence of L-methionine at 37 degrees C and pH 8.0. The novel method that we proposed is accurate, sensitive, reproducible, and linear over a wide range for the determination of L-methionine gamma-lyase activity.


Assuntos
Antimetabólitos Antineoplásicos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Metionina/metabolismo , Animais , Antimetabólitos Antineoplásicos/análise , Butiratos/análise , Liases de Carbono-Enxofre/análise , Liases de Carbono-Enxofre/genética , Carcinoma Pulmonar de Lewis/terapia , Cinética , Metionina/química , Proteus/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
6.
J Bacteriol ; 185(15): 4483-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12867457

RESUMO

A psychrophilic bacterium, Cytophaga sp. strain KUC-1, that abundantly produces a NAD(+)-dependent L-threonine dehydrogenase was isolated from Antarctic seawater, and the enzyme was purified. The molecular weight of the enzyme was estimated to be 139,000, and that of the subunit was determined to be 35,000. The enzyme is a homotetramer. Atomic absorption analysis showed that the enzyme contains no metals. In these respects, the Cytophaga enzyme is distinct from other L-threonine dehydrogenases that have thus far been studied. L-Threonine and DL-threo-3-hydroxynorvaline were the substrates, and NAD(+) and some of its analogs served as coenzymes. The enzyme showed maximum activity at pH 9.5 and at 45 degrees C. The kinetic parameters of the enzyme are highly influenced by temperatures. The K(m) for L-threonine was lowest at 20 degrees C. Dead-end inhibition studies with pyruvate and adenosine-5'-diphosphoribose showed that the enzyme reaction proceeds via the ordered Bi Bi mechanism in which NAD(+) binds to an enzyme prior to L-threonine and 2-amino-3-oxobutyrate is released from the enzyme prior to NADH. The enzyme gene was cloned into Escherichia coli, and its nucleotides were sequenced. The enzyme gene contains an open reading frame of 939 bp encoding a protein of 312 amino acid residues. The amino acid sequence of the enzyme showed a significant similarity to that of UDP-glucose 4-epimerase from Staphylococcus aureus and belongs to the short-chain dehydrogenase-reductase superfamily. In contrast, L-threonine dehydrogenase from E. coli belongs to the medium-chain alcohol dehydrogenase family, and its amino acid sequence is not at all similar to that of the Cytophaga enzyme. L-Threonine dehydrogenase is significantly similar to an epimerase, which was shown for the first time. The amino acid residues playing an important role in the catalysis of the E. coli and human UDP-glucose 4-epimerases are highly conserved in the Cytophaga enzyme, except for the residues participating in the substrate binding.


Assuntos
Oxirredutases do Álcool , Cytophaga/enzimologia , Água do Mar/microbiologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Animais , Regiões Antárticas , Clonagem Molecular , Temperatura Baixa , Cytophaga/isolamento & purificação , Estabilidade Enzimática , Temperatura Alta , Humanos , Cinética , Dados de Sequência Molecular , NAD/metabolismo , Análise de Sequência de DNA , Especificidade por Substrato , UDPglucose 4-Epimerase/genética
7.
J Biochem ; 133(1): 33-42, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12761196

RESUMO

D-Arginase activity was found in the cells of an isolate, Arthrobacter sp. KUJ 8602, grown in the L-arginine medium, and the enzyme was purified and characterized. Its molecular weight was estimated to be about 232,000 by gel filtration, and that of the subunit was approximately 40,000 by SDS-PAGE, suggesting that the enzyme is a homohexamer. The enzyme acted on not only D-arginine but also 4-guanidinobutyrate, 3-guanidinopropionate and even L-arginine. The V(max)/K(m) values for 4-guanidinobutyrate and D-arginine were determined to be 87 and 0.81 micro mol/min/mg/mM, respectively. Accordingly, the enzyme is regarded as a kind of guanidinobutyrase [EC 3.5.3.7]. The pH optima for 4-guanidinobutyrate and D-arginine were 9.0 and 9.5, respectively. The enzyme was inhibited competitively by 5-aminovalerate, and thiol carboxylates such as mercaptoacetate served as strong mixed-type inhibitors. The enzyme contained about 1 g-atom of firmly bound Zn(2+) per mol of subunit, and removal of the metal ions by incubation with 1,10-phenanthroline resulted in loss of activity. The inactivated enzyme was reactivated markedly by incubation with either Zn(2+) or Co(2+), and slightly by incubation with Mn(2+). The nucleotide sequence of enzyme contains an open reading frame that encodes a polypeptide of 353 amino acid residues (M(r): 37,933). The predicted amino acid sequence contains sequences involved in the binding of metal ions and the guanidino group of the substrate, which show a high homology with corresponding sequences of Mn(2+)-dependent amidinohydrolases such as agmatinase from Escherichia coli and L-arginase from rat liver, though the homology of their entire sequences is relatively low (24-43%).


Assuntos
Arginase/metabolismo , Arthrobacter/enzimologia , Ureo-Hidrolases/metabolismo , Zinco/análise , Animais , Arginase/química , Arginase/genética , Cátions Bivalentes/farmacologia , Quelantes/farmacologia , Clonagem Molecular , Cristalografia por Raios X , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Fígado/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Ratos , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Ureo-Hidrolases/química , Ureo-Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA