Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473734

RESUMO

Rhinoviral infections cause approximately 50% of upper respiratory tract infections and novel treatment options are urgently required. We tested the effects of 10 µM to 20 µM sphingosine on the infection of cultured and freshly isolated human cells with minor and major group rhinovirus in vitro. We also performed in vivo studies on mice that were treated with an intranasal application of 10 µL of either a 10 µM or a 100 µM sphingosine prior and after infection with rhinovirus strains 1 and 2 and determined the infection of nasal epithelial cells in the presence or absence of sphingosine. Finally, we determined and characterized a direct binding of sphingosine to rhinovirus. Our data show that treating freshly isolated human nasal epithelial cells with sphingosine prevents infections with rhinovirus strains 2 (minor group) and 14 (major group). Nasal infection of mice with rhinovirus 1b and 2 is prevented by the intranasal application of sphingosine before or as long as 8 h after infection with rhinovirus. Nasal application of the same doses of sphingosine exerts no adverse effects on epithelial cells as determined by hemalaun and TUNEL stainings. The solvent, octylglucopyranoside, was without any effect in vitro and in vivo. Mechanistically, we demonstrate that the positively charged lipid sphingosine binds to negatively charged molecules in the virus, which seems to prevent the infection of epithelial cells. These findings indicate that exogenous sphingosine prevents infections with rhinoviruses, a finding that could be therapeutically exploited. In addition, we demonstrated that sphingosine has no obvious adverse effects on the nasal mucosa. Sphingosine prevents rhinoviral infections by a biophysical mode of action, suggesting that sphingosine could serve to prevent many viral infections of airways and epithelial cells in general. Future studies need to determine the molecular mechanisms of how sphingosine prevents rhinoviral infections and whether sphingosine also prevents infections with other viruses inducing respiratory tract infections. Furthermore, our studies do not provide detailed pharmacokinetics that are definitely required before the further development of sphingosine.


Assuntos
Infecções por Enterovirus , Infecções Respiratórias , Humanos , Animais , Camundongos , Esfingosina , Mucosa Nasal , Células Epiteliais , Rhinovirus
2.
Front Endocrinol (Lausanne) ; 14: 1252727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810891

RESUMO

Introduction: Graves' disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves' disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves' disease and TED is unknown. Here, we investigated whether induction of experimental Graves' disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation. Results: Immunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib. Conclusion: Collectively, these data indicate that the bone marrow is activated in experimental Graves' disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition.


Assuntos
Doenças Autoimunes , Doença de Graves , Oftalmopatia de Graves , Camundongos , Animais , Oftalmopatia de Graves/metabolismo , Arginase , Medula Óssea/metabolismo , Receptores da Tireotropina , Doenças Autoimunes/complicações , Arginina
3.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762308

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Humanos , Animais , Camundongos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Esfingosina , Infecções por Mycobacterium não Tuberculosas/complicações , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Micobactérias não Tuberculosas
4.
J Mol Med (Berl) ; 101(3): 295-310, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790532

RESUMO

Pancreas ductal adenocarcinoma (PDAC) remains a malignant tumor with very poor prognosis and low 5-year overall survival. Here, we aimed to simultaneously target mitochondria and lysosomes as a new treatment paradigm of malignant pancreas cancer in vitro and in vivo. We demonstrate that the clinically used sphingosine analog FTY-720 together with PAPTP, an inhibitor of mitochondrial Kv1.3, induce death of pancreas cancer cells in vitro and in vivo. The combination of both drugs results in a marked inhibition of the acid sphingomyelinase and accumulation of cellular sphingomyelin in vitro and in vivo in orthotopic and flank pancreas cancers. Mechanistically, PAPTP and FTY-720 cause a disruption of both mitochondria and lysosomes, an alteration of mitochondrial bioenergetics and accumulation of cytoplasmic Ca2+, events that collectively mediate cell death. Our findings point to an unexpected cross-talk between lysosomes and mitochondria mediated by sphingolipid metabolism. We show that the combination of PAPTP and FTY-720 induces massive death of pancreas cancer cells, thereby leading to a substantially delayed and reduced PDAC growth in vivo. KEY MESSAGES: FTY-720 inhibits acid sphingomyelinase in pancreas cancer cells (PDAC). FTY-720 induces sphingomyelin accumulation and lysosomal dysfunction. The mitochondrial Kv1.3 inhibitor PAPTP disrupts mitochondrial functions. PAPTP and FTY-720 synergistically kill PDAC in vitro. The combination of FTY-720 and PAPTP greatly delays PDAC growth in vivo.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Esfingomielina Fosfodiesterase , Esfingomielinas/metabolismo , Cloridrato de Fingolimode , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas
5.
J Biol Chem ; 296: 100650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839155

RESUMO

Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.


Assuntos
Ceramidase Ácida/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Células Epiteliais/microbiologia , Fatores Reguladores de Interferon/metabolismo , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Ceramidase Ácida/genética , Animais , Ceramidas/metabolismo , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Fatores Reguladores de Interferon/genética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Esfingosina/metabolismo
6.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33139382

RESUMO

Previous studies have shown that sphingosine kills a variety of pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus Sphingosine concentrations are decreased in airway epithelial cells of cystic fibrosis (CF) mice, and this defect has been linked to the infection susceptibility of these mice. Here, we tested whether the genetic overexpression of acid ceramidase rescues cystic fibrosis mice from pulmonary infections with P. aeruginosa We demonstrate that the transgenic overexpression of acid ceramidase in CF mice corresponds to the overexpression of acid ceramidase in bronchial and tracheal epithelial cells and normalizes ceramide and sphingosine levels in bronchial and tracheal epithelial cells. In addition, the expression of ß1-integrin, which is ectopically expressed on the luminal surface of airway epithelial cells in cystic fibrosis mice, an alteration that is very important for mediating pulmonary P. aeruginosa infections in cystic fibrosis, is normalized in cystic fibrosis airways upon the overexpression of acid ceramidase. Most importantly, the overexpression of acid ceramidase protects cystic fibrosis mice from pulmonary P. aeruginosa infections. Infection of CF mice or CF mice that inhaled sphingosine with P. aeruginosa or a P. aeruginosa mutant that is resistant to sphingosine indicates that sphingosine and not a metabolite kills P. aeruginosa upon pulmonary infection. These studies further support the use of acid ceramidase and its metabolite sphingosine as potential treatments of cystic fibrosis.


Assuntos
Ceramidase Ácida/genética , Ceramidase Ácida/farmacologia , Ceramidase Ácida/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Infecções por Pseudomonas/etiologia , Infecções por Pseudomonas/prevenção & controle , Animais , Fibrose Cística/fisiopatologia , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Modelos Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Virulência/genética
7.
Cell Rep Med ; 1(8): 100142, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33163980

RESUMO

The acid sphingomyelinase/ceramide system plays an important role in bacterial and viral infections. Here, we report that either pharmacological inhibition of acid sphingomyelinase with amitriptyline, imipramine, fluoxetine, sertraline, escitalopram, or maprotiline or genetic downregulation of the enzyme prevents infection of cultured cells or freshy isolated human nasal epithelial cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vesicular stomatitis virus (VSV) pseudoviral particles (pp-VSV) presenting SARS-CoV-2 spike protein (pp-VSV-SARS-CoV-2 spike), a bona fide system mimicking SARS-CoV-2 infection. Infection activates acid sphingomyelinase and triggers a release of ceramide on the cell surface. Neutralization or consumption of surface ceramide reduces infection with pp-VSV-SARS-CoV-2 spike. Treating volunteers with a low dose of amitriptyline prevents infection of freshly isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike. The data justify clinical studies investigating whether amitriptyline, a safe drug used clinically for almost 60 years, or other antidepressants that functionally block acid sphingomyelinase prevent SARS-CoV-2 infection.


Assuntos
Células Epiteliais/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Amitriptilina/farmacologia , Animais , Antidepressivos/farmacologia , Ceramidas/antagonistas & inibidores , Ceramidas/metabolismo , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Ceramidase Neutra/farmacologia , SARS-CoV-2/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírus da Estomatite Vesicular Indiana/genética
8.
Cell Physiol Biochem ; 53(6): 1015-1028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31854953

RESUMO

BACKGROUND/AIMS: Pulmonary infections with Pseudomonas aeruginosa (P. aeruginosa) or Staphylococcus aureus (S. aureus) are of utmost clinical relevance in patients with cystic fibrosis, chronic obstructive pulmonary disease, after trauma and burn, upon ventilation or in immuno-compromised patients. Many P. aeruginosa and S. aureus strains are resistant to many known antibiotics and it is very difficult or often impossible to eradicate the pathogens in patient´s lungs. We have recently shown that the sphingoid base sphingosine very efficiently kills many pathogens, including for instance P. aeruginosa, S. aureus or Acinetobacter baumannii, in vitro. In vivo experiments of our group on cystic fibrosis mice indicated that inhalation of sphingosine prevents or eliminates existing acute or chronic pneumonia with P. aeruginosa or S. aureus in these mice. We also demonstrated that sphingosine is safe to use for inhalation up to high doses, at least in mice. To facilitate development of sphingosine to an anti-bactericidal drug that can be used in humans for inhalation, safety data on non-rodents, larger animals are absolutely required. METHODS: Here, we inhaled mini pigs with increasing doses of sphingosine for 10 days and analyzed the uptake of sphingosine into epithelial cells of bronchi as well as into the trachea and lung and the systemic circulation. Moreover, we measured the generation of ceramide and sphingosine 1-phosphate that potentially mediate inflammation, the influx of leukocytes, epithelial cell death and disruption of the epithelial cell barrier. RESULTS: We demonstrate that inhalation of sphingosine results in increased levels of sphingosine in the luminal membrane of bronchi and the trachea, but not in systemic accumulation. Inhaled sphingosine had no side effects up to very high doses. CONCLUSION: In summary, we demonstrate that inhalation of sphingosine results in an increase of sphingosine concentrations in the luminal plasma membrane of tracheal and bronchial epithelial cells. The inhalation has no systemic or local side effects.


Assuntos
Antibacterianos/metabolismo , Esfingosina/metabolismo , Administração por Inalação , Animais , Antibacterianos/farmacologia , Brônquios/metabolismo , Brônquios/patologia , Ceramidas/análise , Humanos , Pulmão/patologia , Lisofosfolipídeos/análise , Espectrometria de Massas , Pseudomonas aeruginosa/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/análise , Esfingosina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Suínos , Porco Miniatura , Traqueia/metabolismo , Traqueia/patologia
9.
Biol Chem ; 399(10): 1203-1213, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29613852

RESUMO

Pulmonary infections of cystic fibrosis (CF) patients with Staphylococcus aureus (S. aureus) occur very early in the disease. The molecular details that cause infection-susceptibility of CF patients to and mediate infection with S. aureus are poorly characterized. Therefore, we aimed to identify the role of α-toxin, a major S. aureus toxin, for pulmonary infection of CF mice. Infection with S. aureus JE2 resulted in severe pneumonia in CF mice, while wildtype mice were almost unaffected. Deficiency of α-toxin in JE2-Δhla reduced the pathogenicity of S. aureus in CF mice. However, CF mice were still more susceptible to the mutant S. aureus strain than wildtype mice. The S. aureus JE2 induced a marked increase of ceramide and a downregulation of sphingosine and acid ceramidase expression in bronchi of CF mice. Deletion of α-toxin reduced these changes after infection of CF mice. Similar changes were observed in wildtype mice, but at much lower levels. Our data indicate that expression of α-toxin is a major factor causing S. aureus infections in CF mice. Wildtype S. aureus induces a marked increase of ceramide and a reduction of sphingosine and acid ceramidase expression in bronchial epithelial cells of wildtype and CF mice, changes that determine infection susceptibility.


Assuntos
Toxinas Bacterianas/metabolismo , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Proteínas Hemolisinas/metabolismo , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Animais , Fibrose Cística/microbiologia , Feminino , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/microbiologia
10.
Cell Physiol Biochem ; 39(2): 790-801, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27475812

RESUMO

BACKGROUND/AIMS: Major depressive disorder is one of the most common diseases in western countries. The disease is mainly defined by its psychiatric symptoms. However, the disease has also many symptoms outside the central nervous system, in particular cardiovascular symptoms. Recent studies demonstrated that the acid sphingomyelinase/ceramide system plays an important role in the development of major depressive disorder and functions as a target of antidepressants. METHODS: Here, we investigated (i) whether ceramide accumulates in endothelial cells in the neurogenetic zone of the hippocampus after glucocorticosterone-mediated stress, (ii) whether ceramide is released into the extracellular space of the hippocampus and (iii) whether extracellular ceramide inhibits neuronal proliferation. Ceramide was determined in endothelial cell culture supernatants or extracellular hippocampus extracts by a kinase assay. Endothelial ceramide in the hippocampus was analyzed by confocal microscopy of brain sections stained with Cy3-labelled anti-ceramide antibodies and FITC-Isolectin B4. Neuronal proliferation was measured by incubation of pheochromocytoma neuronal cells with culture supernatants and extracellular hippocampus extracts. RESULTS: Treatment of cultured endothelial cells with glucocorticosterone induces a release of ceramide into the supernatant. Likewise, treatment of mice with glucocorticosterone triggers a release of ceramide into the extracellular space of the hippocampus. The release of ceramide is inhibited by concomitant treatment with the antidepressant amitriptyline, which also inhibits the activity of the acid sphingomyelinase. Studies employing confocal microscopy revealed that ceramide is formed and accumulates exclusively in endothelial cells in the hippocampus of stressed mice, a process that was again prevented by co-application of amitriptyline. Ceramide released in the culture supernatant or into the extracellular space of the hippocampus reduced proliferation of neurons in vitro. CONCLUSION: The data suggest a novel model for the pathogenesis of major depressive disorder, i.e. the release of ceramide-enriched microvesicles from endothelial cells that negatively affect neuronal proliferation in the hippocampus, but may also induce cardiovascular disease and other systemic symptoms of patients with major depressive disorder.


Assuntos
Proliferação de Células/fisiologia , Ceramidas/metabolismo , Células Endoteliais/metabolismo , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , 11-Hidroxicorticosteroides/farmacologia , Amitriptilina/farmacologia , Animais , Antidepressivos Tricíclicos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/prevenção & controle , Células Endoteliais/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células-Tronco Neurais/efeitos dos fármacos , Células PC12 , Ratos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo
11.
Neurosignals ; 24(1): 48-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27398923

RESUMO

BACKGROUND: Melatonin has been shown to have antidepressive effects. We tested whether melatonin inhibits the acid sphingomyelinase/ceramide system and mediates its antidepressive effects via inhibition of the acid sphingomyelinase and a reduction of ceramide in the hippocampus. Antidepressants such as amitriptyline and fluoxetine were previously shown to inhibit the acid sphingomyelinase/ceramide system, which mediates neurogenesis and behavioral changes induced by these drugs. METHODS: The effect of melatonin on the activity of the acid sphingomyelinase prior to and after treatment with melatonin was determined in cultured neurons and in vivo in the hippocampus of mice by measuring the consumption of [14C] sphingomyelin. Ceramide was measured by DAG kinase assay and fluorescence microscopy of the hippocampus and of cultured neurons. Neurogenesis in the hippocampus was analyzed by in vivo labeling with bromodeoxyuridine. Behavior was assessed in standardized tests. RESULTS: Melatonin treatment inhibited acid sphingomyelinase in vitro in cultured pheochromocytoma cells and in vivo in the hippocampus, which resulted in a reduction of ceramide in vitro and in vivo. The inhibition of the acid sphingomyelinase/ceramide system translated into increased neurogenesis in glucocorticosterone-stressed mice after treatment with melatonin, an effect that is abrogated in acid sphingomyelinase-deficient mice. Likewise, melatonin improved the depressive behavior of stressed mice, a therapeutic effect that was again absent in acid sphingomyelinase-deficient animals. CONCLUSION: These data indicate that the antidepressive effects of melatonin as well as the induction of neurogenesis triggered by this drug are mediated by an inhibition of the acid sphingomyelinase/ceramide system. This is the first study to identify melatonin as an inhibitor of the acid sphingomyelinase.

12.
Cell Physiol Biochem ; 38(1): 1-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26741636

RESUMO

BACKGROUND: Hematogenous metastasis of malignant tumor cells is a multistep process that requires release of tumor cells from the local tumor mass, interaction of the tumor cells with platelets in the blood, and adhesion of either the activated tumor cells or the complexes of platelets and tumor cells to the endothelial cells of the target organ. We have previously shown that the interaction of melanoma cells with platelets results in the release of acid sphingomyelinase (Asm) from activated platelets. Secreted platelet-derived Asm acts on malignant tumor cells to cluster and activate integrins; such clustering and activation are necessary for tumor cell adhesion to endothelial cells and for metastasis. METHODS: We examined the response of tumor cells to treatment with extracellular sphingomyelinase or co-incubation with wild-type and Asm-deficient platelets. We determined the phosphorylation and activation of several intracellular signaling molecules, in particular p38 kinase (p38K), phospholipase Cx03B3; (PLCx03B3;), ezrin, and extracellular signal-regulated kinases. RESULTS: Incubation of B16F10 melanoma cells with Asm activates p38 MAP kinase (p38K), phospholipase Cx03B3; (PLCx03B3;), ezrin, and extracellular signal-regulated kinases. Co-incubation of B16F10 melanoma cells with wild-type or Asm-deficient platelets showed that the phosphorylation/activation of p38K is dependent on Asm. Pharmacological blockade of p38K prevents activation of ß1 integrin and adhesion in vitro. Most importantly, inhibition of p38K activity in B16F10 melanoma cells prevents tumor cell adhesion and metastasis to the lung in vivo, a finding indicating the importance of p38K for metastasis. CONCLUSIONS: Asm, secreted from activated platelets after tumor cell-platelet contact, induces p38K phosphorylation in tumor cells. This in turn stimulates ß1 integrin activation that is necessary for adhesion and subsequent metastasis of tumor cells. Thus, inhibition of p38K might be a novel target to prevent tumor metastasis.


Assuntos
Melanoma Experimental/patologia , Metástase Neoplásica , Esfingomielina Fosfodiesterase/genética , Animais , Plaquetas/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Integrina beta1/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase C gama/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esfingomielina Fosfodiesterase/deficiência , Transplante Homólogo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Front Biosci (Elite Ed) ; 8(2): 311-25, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709664

RESUMO

Tuberculosis is one of the most serious infectious diseases worldwide. The initial pulmonal localization of the pathogens often develops into systemic infection with high lethality. We investigated the role of the mammalian neutral sphingomyelinase (Nsm)/ceramide system in systemic infection of mice and murine macrophages with Mycobacterium bovis Bacillus Calmette-Guerin (BCG). Our results demonstrate that BCG infection of RAW cells, a macrophage cell line, results in rapid activation of Nsm but not of acid sphingomyelinase (Asm). Activation of Nsm is associated with a massive release of superoxide. Genetic knock-down of Nsm in RAW cells prevented superoxide production upon BCG infection. Superoxide suppressed autophagy in BCG-infected macrophages in vitro and in vivo: Knock-down of Nsm or inhibition of superoxide restored autophagy in macrophages and increased killing of intracellular bacteria upon BCG infection. Most importantly, autophagy was also massively increased in Nsm-heterozygous mice, protecting these mice from systemic BCG infections, granuloma development, and chronic infections of liver and spleen. These findings indicate that the Nsm/ceramide system plays a role in protecting mice against systemic tuberculosis by preventing superoxide-mediated inhibition of autophagy.


Assuntos
Esfingomielina Fosfodiesterase/metabolismo , Tuberculose/prevenção & controle , Animais , Autofagia , Linhagem Celular , Ativação Enzimática , Camundongos , Mycobacterium bovis/patogenicidade , Superóxidos/metabolismo , Tuberculose/microbiologia
14.
Antioxid Redox Signal ; 22(13): 1097-110, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25686490

RESUMO

AIMS: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. RESULTS: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. INNOVATION: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. CONCLUSION: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions.


Assuntos
Morte Celular , Mitocôndrias/metabolismo , Neutrófilos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Animais , Linhagem Celular , Ceramidas/metabolismo , Fibrose Cística/metabolismo , Citocromos c/metabolismo , Células HL-60 , Humanos , Interleucina-8/metabolismo , Células Jurkat , Fígado/metabolismo , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Neutrófilos/microbiologia , Neutrófilos/patologia , Infecções por Pseudomonas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
15.
Nat Med ; 17(3): 341-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21297617

RESUMO

Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe infections in immunocompromised individuals and individuals with cystic fibrosis or chronic obstructive pulmonary disease (COPD). Here we show that kinase suppressor of Ras-1 (Ksr1)-deficient mice are highly susceptible to pulmonary P. aeruginosa infection accompanied by uncontrolled pulmonary cytokine release, sepsis and death, whereas wild-type mice clear the infection. Ksr1 recruits and assembles inducible nitric oxide (NO) synthase (iNOS) and heat shock protein-90 (Hsp90) to enhance iNOS activity and to release NO upon infection. Ksr1 deficiency prevents lung alveolar macrophages and neutrophils from activating iNOS, producing NO and killing bacteria. Restoring NO production restores the bactericidal capability of Ksr1-deficient lung alveolar macrophages and neutrophils and rescues Ksr1-deficient mice from P. aeruginosa infection. Our findings suggest that Ksr1 functions as a previously unknown scaffold that enhances iNOS activity and is therefore crucial for the pulmonary response to P. aeruginosa infections.


Assuntos
Pneumopatias/prevenção & controle , Proteínas Quinases/fisiologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/isolamento & purificação , Animais , Ativação Enzimática , Proteínas de Choque Térmico HSP90/metabolismo , Pneumopatias/microbiologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fagócitos/metabolismo , Infecções por Pseudomonas/microbiologia
16.
Hum Mutat ; 19(2): 165-72, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11793475

RESUMO

A new method for mutation detection is described, which is a technical advancement of the protein truncation test. The new technique is non-radioactive and highly sensitive for detection of virtually all sequence mutations, which lead to a stop signal or to the shift of the translation frame. The method includes four steps: 1) capture of the interesting sequence copies out of the sample by binding to an immobilized complementary sequence, 2) PCR amplification of the gene fragment to be analyzed with primers coding both for amino- and carboxy-terminal tags, 3) in vitro transcription and translation, and 4) analysis of the translation products by Western blot. As an evaluation of the new method, we detected mutated gene copies at a dilution of 1 to 40 compared to the non-mutated gene. Using the method, we were able to detect a mutation in the adenomatous polyposis coli tumor suppressor gene (APC) in a stool sample of a colorectal cancer patient. This mutation could not be detected by direct sequencing of the amplified APC gene fragment.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Códon sem Sentido/genética , Mutação da Fase de Leitura/genética , Genes APC , Testes Genéticos/métodos , Proteína da Polipose Adenomatosa do Colo/química , Sequência de Bases , Western Blotting , Códon/genética , DNA/genética , DNA/isolamento & purificação , Análise Mutacional de DNA/métodos , Fezes/química , Humanos , Dados de Sequência Molecular , Peso Molecular , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Radioisótopos , Sensibilidade e Especificidade , Moldes Genéticos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA