RESUMO
BACKGROUND AND OBJECTIVE: Predicting response to therapy for each patient's tumor is critical to improving long-term outcomes for muscle-invasive bladder cancer. This study aims to establish ex vivo bladder cancer patient-derived organoid (PDO) models that are representative of patients' tumors and determine the potential efficacy of standard of care and curated experimental therapies. METHODS: Tumor material was collected prospectively from consented bladder cancer patients to generate short-term PDO models, which were screened against a panel of clinically relevant drugs in ex vivo three-dimensional culture. Multiomic profiling was utilized to validate the PDO models, establish the molecular characteristics of each tumor, and identify potential biomarkers of drug response. Gene expression (GEX) patterns between paired primary tissue and PDO samples were assessed using Spearman's rank correlation coefficients. Molecular correlates of therapy response were identified using Pearson correlation coefficients and Kruskal-Wallis tests with Dunn's post hoc pairwise comparison testing. KEY FINDINGS AND LIMITATIONS: A total of 106 tumors were collected from 97 patients, with 65 samples yielding sufficient material for complete multiomic molecular characterization and PDO screening with six to 32 drugs/combinations. Short-term PDOs faithfully represent the tumor molecular characteristics, maintain diverse cell types, and avoid shifts in GEX-based subtyping that accompany long-term PDO cultures. Utilizing an integrative approach, novel correlations between ex vivo drug responses and genomic alterations, GEX, and protein expression were identified, including a multiomic signature of gemcitabine response. The positive predictive value of ex vivo drug responses and the novel multiomic gemcitabine response signature need to be validated in future studies. CONCLUSIONS AND CLINICAL IMPLICATIONS: Short-term PDO cultures retain the molecular characteristics of tumor tissue and avoid shifts in expression-based subtyping that have plagued long-term cultures. Integration of multiomic profiling and ex vivo drug screening data identifies potential predictive biomarkers, including a novel signature of gemcitabine response. PATIENT SUMMARY: Better models are needed to predict patient response to therapy in bladder cancer. We developed a platform that uses short-term culture to best mimic each patient's tumor and assess potential sensitivity to therapeutics.
RESUMO
Fatty acid synthesis (FAS) has been shown to play a key role in the survival of brain-metastatic (BM) breast cancer. We demonstrate that the fatty acid synthase inhibitor TVB-2640 synergizes with the topoisomerase inhibitor SN-38 in triple-negative breast cancer (TNBC) BM cell lines, upregulates FAS and downregulates cell cycle progression gene expression, and slows the motility of TNBC BM cell lines. The combination of SN-38 and TVB-2640 warrants further consideration as a potential therapeutic option in TNBC BMs.
RESUMO
Using dasatinib linked to E3 ligase ligands, we identified a potent and selective dual Csk/c-Src PROTAC degrader. We then replaced dasatinib, the c-Src-directed ligand, with a conformation-selective analogue that stabilizes the αC-helix-out conformation of c-Src. Using the αC-helix-out ligand, we identified a PROTAC that is potent and selective for c-Src. We demonstrated a high degree of catalysis with our c-Src PROTACs. Using our c-Src PROTACs, we identified pharmacological advantages of c-Src degradation compared to inhibition with respect to cancer cell proliferation.
Assuntos
Ubiquitina-Proteína Ligases , Dasatinibe/farmacologia , Proteína Tirosina Quinase CSK/metabolismo , Ligantes , Proliferação de Células , Ubiquitina-Proteína Ligases/metabolismo , ProteóliseRESUMO
The development of novel therapies for brain metastases is an unmet need. Brain metastases may have unique molecular features that could be explored as therapeutic targets. A better understanding of the drug sensitivity of live cells coupled to molecular analyses will lead to a rational prioritization of therapeutic candidates. We evaluated the molecular profiles of 12 breast cancer brain metastases (BCBM) and matched primary breast tumors to identify potential therapeutic targets. We established six novel patient-derived xenograft (PDX) from BCBM from patients undergoing clinically indicated surgical resection of BCBM and used the PDXs as a drug screening platform to interrogate potential molecular targets. Many of the alterations were conserved in brain metastases compared with the matched primary. We observed differential expressions in the immune-related and metabolism pathways. The PDXs from BCBM captured the potentially targetable molecular alterations in the source brain metastases tumor. The alterations in the PI3K pathway were the most predictive for drug efficacy in the PDXs. The PDXs were also treated with a panel of over 350 drugs and demonstrated high sensitivity to histone deacetylase and proteasome inhibitors. Our study revealed significant differences between the paired BCBM and primary breast tumors with the pathways involved in metabolisms and immune functions. While molecular targeted drug therapy based on genomic profiling of tumors is currently evaluated in clinical trials for patients with brain metastases, a functional precision medicine strategy may complement such an approach by expanding potential therapeutic options, even for BCBM without known targetable molecular alterations. Significance: Examining genomic alterations and differentially expressed pathways in brain metastases may inform future therapeutic strategies. This study supports genomically-guided therapy for BCBM and further investigation into incorporating real-time functional evaluation will increase confidence in efficacy estimations during drug development and predictive biomarker assessment for BCBM.
Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Medicina de Precisão , Fosfatidilinositol 3-Quinases/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológicoRESUMO
Manley and co-workers provide data demonstrating that, at super-pharmacological concentrations (300â µM), a ternary complex between Abl, asciminib, and ATP-competitive inhibitors is possible. The work in our manuscript concerns the interplay of asciminib (and GNF-2) with ATP-competitive inhibitors at pharmacologically relevant concentrations (Cmax =1.6-3.7â µM for asciminib). Manley and co-workers do not question any of the studies that we reported, nor do they provide explanations for how our work fits into their preferred model. Herein, we consider the data presented by Manley and co-workers. In addition, we provide new data supporting the findings in our Communication. Asciminib and ATP-competitive inhibitors do not simultaneously bind Abl at pharmacologically relevant concentrations unless the conformation selectivity for both ligands is matched.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-abl , Humanos , Trifosfato de Adenosina/metabolismo , Conformação Molecular , Mutação , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidoresRESUMO
Small molecule kinase inhibitors have shown immense clinical utility for diverse indications. While >60 kinase inhibitors have been approved (and many more in clinical trials), it remains unclear whether the clinical efficacy of a kinase inhibitor is solely dependent on enzymatic inhibition, or whether non-catalytic functions play a role in the efficacy of some kinase inhibitors. Here, we designed and synthesized a series of pyrazolopyrimidine kinase inhibitors that modulate the global kinase conformation of c-Src kinase. Expanding upon our findings from the pyrazolopyrimidine inhibitor series, we designed, synthesized, and evaluated three pair of conformation-selective kinase inhibitors, each with a unique hinge-binding scaffold. We profiled each pair of kinase inhibitors across 468 kinases and identified 38 kinases that could be studied using these pair of conformation-selective inhibitors. We also explore the binding of conformation-selective kinase inhibitors to mutant kinases of EGFR, FLT3, and KIT. Together, these studies yield important insight into the design of conformation-tunable kinase inhibitors and provide a toolset of compounds to study the role of protein conformation on kinase signaling.
Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Fosfotransferases/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Allosteric inhibitors of Abl kinase are being explored in the clinic, often in combination with ATP-site inhibitors of Abl kinase. However, there are conflicting data on whether both ATP-competitive inhibitors and myristoyl-site allosteric inhibitors can simultaneously bind Abl kinase. Here, we determine whether there is synergy or antagonism between ATP-competitive inhibitors and allosteric inhibitors of Abl. We observe that clinical ATP-competitive inhibitors are not synergistic with allosteric ABL inhibitors, however, conformation-selective ATP-site inhibitors that modulate the global conformation of Abl can afford synergy. We demonstrate that kinase conformation is the key driver to simultaneously bind two compounds to Abl kinase. Finally, we explore the interaction of allosteric and conformation selective ATP-competitive inhibitors in a series of biochemical and cellular assays.
Assuntos
Trifosfato de Adenosina/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/química , Domínio Catalítico/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Modelos Moleculares , Inibidores de Proteínas Quinases/químicaRESUMO
The multi-domain scaffolding protein Scribble (Scrib) regulates cell polarity and growth signaling at cell-cell junctions. In epithelial cancers, Scrib mislocalization and overexpression paradoxically transform Scrib from a basolateral tumor suppressor to a cytosolic driver of tumorigenicity. To address the function of Scrib (mis)localization, a Scrib-HaloTag fusion was genome engineered in polarized epithelial cells. Expression of the epithelial to mesenchymal transcription factor Snail displaced Scrib-HaloTag from cell junctions, mirroring the mislocalization observed in cancers. Interestingly, Snail expression promotes Yes-associated protein-1 (YAP1) nuclear localization independent of hippo pathway-regulated YAP-S127 phosphorylation. Furthermore, Scrib HaloPROTAC degradation attenuates YAP1-Y357 phosphorylation. Halo-ligand affinity purification mass spectrometry analysis identified the Src family kinase YES1 as a mislocalized Scrib interaction partner, preferentially recruiting the kinase active and open global conformation (αC helix in). Altogether, mislocalized Scrib enhances YAP1 phosphorylation by scaffolding active YES1.
Assuntos
Proteínas Proto-Oncogênicas c-yes/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Células Cultivadas , Cães , Feminino , Humanos , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas de Sinalização YAP/genéticaRESUMO
Increased availability of drug response and genomics data for many tumor cell lines has accelerated the development of pan-cancer prediction models of drug response. However, it is unclear how much between-tissue differences in drug response and molecular characteristics may contribute to pan-cancer predictions. Also unknown is whether the performance of pan-cancer models could vary by cancer type. Here, we built a series of pan-cancer models using two datasets containing 346 and 504 cell lines, each with MEK inhibitor (MEKi) response and mRNA expression, point mutation, and copy number variation data, and found that, while the tissue-level drug responses are accurately predicted (between-tissue ρ = 0.88-0.98), only 5 of 10 cancer types showed successful within-tissue prediction performance (within-tissue ρ = 0.11-0.64). Between-tissue differences make substantial contributions to the performance of pan-cancer MEKi response predictions, as exclusion of between-tissue signals leads to a decrease in Spearman's ρ from a range of 0.43-0.62 to 0.30-0.51. In practice, joint analysis of multiple cancer types usually has a larger sample size, hence greater power, than for one cancer type; and we observe that higher accuracy of pan-cancer prediction of MEKi response is almost entirely due to the sample size advantage. Success of pan-cancer prediction reveals how drug response in different cancers may invoke shared regulatory mechanisms despite tissue-specific routes of oncogenesis, yet predictions in different cancer types require flexible incorporation of between-cancer and within-cancer signals. As most datasets in genome sciences contain multiple levels of heterogeneity, careful parsing of group characteristics and within-group, individual variation is essential when making robust inference.
Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico , Algoritmos , Área Sob a Curva , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Inibidores Enzimáticos/farmacologia , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , Aprendizado de Máquina , Mutação Puntual , Polimorfismo de Nucleotídeo Único , RNA/genética , RNA/metabolismo , RNA Mensageiro/metabolismo , Análise de RegressãoRESUMO
While many resources exist for the drug screening of bladder cancer cell lines in 2D culture, it is widely recognized that screening in 3D culture is more representative of in vivo response. Importantly, signaling changes between 2D and 3D culture can result in changes to drug response. To address the need for 3D drug screening of bladder cancer cell lines, we screened 17 bladder cancer cell lines using a library of 652 investigational small-molecules and 3 clinically relevant drug combinations in 3D cell culture. Our goal was to identify compounds and classes of compounds with efficacy in bladder cancer. Utilizing established genomic and transcriptomic data for these bladder cancer cell lines, we correlated the genomic molecular parameters with drug response, to identify potentially novel groups of tumors that are vulnerable to specific drugs or classes of drugs. Importantly, we demonstrate that MEK inhibitors are a promising targeted therapy for the basal subtype of bladder cancer, and our data indicate that drug screening of 3D cultures provides an important resource for hypothesis generation.
RESUMO
PURPOSE: There is a need for biomarkers of drug efficacy for targeted therapies in triple-negative breast cancer (TNBC). As a step toward this, we identify multi-omic molecular determinants of anti-TNBC efficacy in cell lines for a panel of oncology drugs. METHODS: Using 23 TNBC cell lines, drug sensitivity scores (DSS3) were determined using a panel of investigational drugs and drugs approved for other indications. Molecular readouts were generated for each cell line using RNA sequencing, RNA targeted panels, DNA sequencing, and functional proteomics. DSS3 values were correlated with molecular readouts using a FDR-corrected significance cutoff of p* < 0.05 and yielded molecular determinant panels that predict anti-TNBC efficacy. RESULTS: Six molecular determinant panels were obtained from 12 drugs we prioritized based on their efficacy. Determinant panels were largely devoid of DNA mutations of the targeted pathway. Molecular determinants were obtained by correlating DSS3 with molecular readouts. We found that co-inhibiting molecular correlate pathways leads to robust synergy across many cell lines. CONCLUSIONS: These findings demonstrate an integrated method to identify biomarkers of drug efficacy in TNBC where DNA predictions correlate poorly with drug response. Our work outlines a framework for the identification of novel molecular determinants and optimal companion drugs for combination therapy based on these correlates.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/etiologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Perfilação da Expressão Gênica , Humanos , Mutação , Proteômica , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
Protein kinase pathways are traditionally mapped by monitoring downstream phosphorylation. Meanwhile, the noncatalytic functions of protein kinases remain under-appreciated as critical components of kinase signaling. c-Src is a protein kinase known to have noncatalytic signaling function important in healthy and disease cell signaling. Large conformational changes in the regulatory domains regulate c-Src's noncatalytic functions. Herein, we demonstrate that changes in the global conformation of c-Src can be monitored using a selective proteolysis methodology. Further, we use this methodology to investigate changes in the global conformation of several clinical and nonclinical mutations of c-Src. Significantly, we identify a novel activating mutation observed clinically, W121R, that can escape down-regulation mechanisms. Our methodology can be expanded to monitor the global conformation of other tyrosine kinases, including c-Abl, and represents an important tool toward the elucidation of the noncatalytic functions of protein kinases.
Assuntos
Proteína Tirosina Quinase CSK/química , Proteína Tirosina Quinase CSK/genética , Proteína Tirosina Quinase CSK/metabolismo , Humanos , Modelos Moleculares , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/metabolismo , Mutação Puntual , Conformação Proteica , ProteóliseRESUMO
Tumor associated macrophages (TAMs) are increasingly recognized as major contributors to the metastatic progression of breast cancer and enriched levels of TAMs often correlate with poor prognosis. Despite our current advances it remains unclear which subset of M2-like macrophages have the highest capacity to enhance the metastatic program and which mechanisms regulate this process. Effective targeting of macrophages that aid cancer progression requires knowledge of the specific mechanisms underlying their pro-metastatic actions, as to avoid the anticipated toxicities from generalized targeting of macrophages. To this end, we set out to understand the relationship between the regulation of tumor secretions by Rho-GTPases, which were previously demonstrated to affect them, macrophage differentiation, and the converse influence of macrophages on cancer cell phenotype. Our data show that IL-4/IL-13 in vitro differentiated M2a macrophages significantly increase migratory and invasive potential of breast cancer cells at a greater rate than M2b or M2c macrophages. Our previous work demonstrated that the Rho-GTPases are potent regulators of macrophage-induced migratory responses; therefore, we examined M2a-mediated responses in RhoA or RhoC knockout breast cancer cell models. We find that both RhoA and RhoC regulate migration and invasion in MDA-MB-231 and SUM-149 cells following stimulation with M2a conditioned media. Secretome analysis of M2a conditioned media reveals high levels of vascular endothelial growth factor (VEGF) and chemokine (C-C motif) ligand 18 (CCL-18). Results from our functional assays reveal that M2a TAMs synergistically utilize VEGF and CCL-18 to promote migratory and invasive responses. Lastly, we show that pretreatment with ROCK inhibitors Y-276332 or GSK42986A attenuated VEGF/CCL-18 and M2a-induced migration and invasion. These results support Rho-GTPase signaling regulates downstream responses induced by TAMs, offering a novel approach for the prevention of breast cancer metastasis by anti-RhoA/C therapies.
RESUMO
We have developed a general methodology to produce bivalent kinase inhibitors for c-Src that interact with the SH2 and ATP binding pockets. Our approach led to a highly selective bivalent inhibitor of c-Src. We demonstrate impressive selectivity for c-Src over homologous kinases. Exploration of the unexpected high level of selectivity yielded insight into the inherent flexibility of homologous kinases. Finally, we demonstrate that our methodology is modular and both the ATP-competitive fragment and conjugation chemistry can be swapped.
Assuntos
Alcinos/metabolismo , Alcinos/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/química , Trifosfato de Adenosina/metabolismo , Alcinos/química , Sequência de Aminoácidos , Ligação Competitiva , Proteína Tirosina Quinase CSK , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Quinases da Família src/metabolismoRESUMO
PURPOSE: c-Src has been shown to play a pivotal role in breast cancer progression, metastasis, and angiogenesis. In the clinic, however, the limited efficacy and high toxicity of existing c-Src inhibitors have tempered the enthusiasm for targeting c-Src. We developed a novel c-Src inhibitor (UM-164) that specifically binds the DFG-out inactive conformation of its target kinases. We hypothesized that binding the inactive kinase conformation would lead to improved pharmacologic outcomes by altering the noncatalytic functions of the targeted kinases. EXPERIMENTAL DESIGN: We have analyzed the anti-triple-negative breast cancer (TNBC) activity of UM-164 in a comprehensive manner that includes in vitro cell proliferation, migration, and invasion assays (including a novel patient-derived xenograft cell line, VARI-068), along with in vivo TNBC xenografts. RESULTS: We demonstrate that UM-164 binds the inactive kinase conformation of c-Src. Kinome-wide profiling of UM-164 identified that Src and p38 kinase families were potently inhibited by UM-164. We further demonstrate that dual c-Src/p38 inhibition is superior to mono-inhibition of c-Src or p38 alone. We demonstrate that UM-164 alters the cell localization of c-Src in TNBC cells. In xenograft models of TNBC, UM-164 resulted in a significant decrease of tumor growth compared with controls, with limited in vivo toxicity. CONCLUSIONS: In contrast with c-Src kinase inhibitors used in the clinic (1, 2), we demonstrate in vivo efficacy in xenograft models of TNBC. Our results suggest that the dual activity drug UM-164 is a promising lead compound for developing the first targeted therapeutic strategy against TNBC. Clin Cancer Res; 22(20); 5087-96. ©2016 AACR.
Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação/fisiologia , Proteína Tirosina Quinase CSK , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Ligação Proteica/fisiologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The studies culminating in the total synthesis of the glutarimide-containing eukaryote translation elongation inhibitor lactimidomycin are described. The optimized synthetic route features a Zn(II)-mediated intramolecular Horner-Wadsworth-Emmons (HWE) reaction resulting in a highly stereoselective formation of the strained 12-membered macrolactone of lactimidomycin on a 423 mg scale. The presence of the E,Z-diene functionality was found to be key for effective macrocyclizations as a complete removal of these unsaturation units resulted in exclusive formation of the dimer rather than monocyclic enoate. The synthetic route features a late-stage installation of the glutarimide functionality via an asymmetric catalytic Mukaiyama aldol reaction, which allows for a quick generation of lactimidomycin homolog 55 containing two additional carbons in the glutarimide side chain. Similar to lactimidomycin, this analog was found to possess cytotoxicity against MDA-MB-231 breast cancer cells (GI50 =1-3 µM) using in vitro 2D and 3D assays. Although lactimidomycin was found to be the most potent compound in terms of anticancer activity, 55 as well as truncated analogues 50-52 lacking the glutarimide side-chain were found to be significantly less toxic against human mammary epithelial cells.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Lactonas/química , Macrolídeos/síntese química , Macrolídeos/farmacologia , Piperidonas/síntese química , Piperidonas/farmacologia , Zinco/química , Antineoplásicos/química , Fatores Biológicos , Ciclização , Humanos , Macrolídeos/química , Estrutura Molecular , Piperidonas/química , EstereoisomerismoRESUMO
We have employed novel fragment-based screening methodology to discover bivalent kinase inhibitors with improved selectivity. Starting from a low molecular weight promiscuous kinase inhibitor, we appended a thiol for subsequent reaction with a library of acrylamide electrophiles. Enzyme-templated screening was performed to identify acrylamides that assemble into bivalent inhibitors of c-Src kinase. Upon identification of acrylamide fragments that improve the binding affinity of our lead thiol, we characterized the resulting bivalent inhibitors and identified a series of kinase inhibitors with improved potency and selectivity compared to the thiol-containing precursor. Provided that protein can be prepared free of endogenous reactive cysteines, our methodology is general and could be applied to nearly any enzyme of interest.
RESUMO
We have developed a modular approach to bisubstrate inhibition of protein kinases. We apply our methodology to c-Src and identify a highly selective bisubstrate inhibitor for this target. Our approach has yielded the most selective c-Src inhibitor to date, and the methodology to render the bisubstrate inhibitor cell-permeable provides a highly valuable tool for the study of c-Src signaling. In addition, we have applied our bisubstrate inhibitor to develop a novel screening methodology to identify non-ATP-competitive inhibitors of c-Src. Using this methodology, we have discovered the most potent non-ATP-competitive inhibitor reported to date. Our methodology is designed to be general and could be applicable to additional kinases inhibited by the promiscuous ATP-competitive fragment used in our studies.
Assuntos
Trifosfato de Adenosina/química , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Ligação Competitiva , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Transdução de Sinais , Relação Estrutura-Atividade , Especificidade por Substrato , Quinases da Família src/química , Quinases da Família src/metabolismoRESUMO
In this issue of Chemistry & Biology, Hari and colleagues show that conformation-selective ATP-competitive kinase inhibitors have distinct noncatalytic effects on Erk2, including the ability to modulate protein-protein interactions outside the ATP-binding site. These findings enhance our knowledge about the diverse array of activities in which kinase inhibitors can target signaling pathways.