Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2303196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37865947

RESUMO

Advanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells. It is shown that angiogenic multicellular tumor spheroids promote the growth of a vascular network, which in turn further enhances the growth of cocultivated tumor spheroids. The self-developed vascular structure infiltrates the tumor spheroids, forms functional connections with the bioprinted endothelium, and can be perfused by erythrocytes and polystyrene microspheres. Moreover, cancer cells migrate spontaneously from the tumor spheroid through the self-assembled vascular network into the fluid flow. Additionally, tumor type specific characteristics of desmoplasia, angiogenesis, and metastatic propensity are preserved between patient-derived samples and tumors derived from this same material growing in the bioreactors. Overall, this modular approach opens up new avenues for studying tumor pathophysiology and cellular interactions in vitro, providing a platform for advanced drug testing while reducing the need for in vivo experimentation.


Assuntos
Bioimpressão , Neoplasias , Humanos , Esferoides Celulares/patologia , Hidrogéis/química , Neoplasias/patologia , Células Endoteliais da Veia Umbilical Humana , Engenharia Tecidual
3.
Drug Deliv Transl Res ; 13(5): 1195-1211, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35816231

RESUMO

Polymeric micelles are increasingly explored for tumor-targeted drug delivery. CriPec® technology enables the generation of core-crosslinked polymeric micelles (CCPMs) based on thermosensitive (mPEG-b-pHPMAmLacn) block copolymers, with high drug loading capacity, tailorable size, and controlled drug release kinetics. In this study, we decorated clinical-stage CCPM with the αvß3 integrin-targeted cyclic arginine-glycine-aspartic acid (cRGD) peptide, which is one of the most well-known active targeting ligands evaluated preclinically and clinically. Using a panel of cell lines with different expression levels of the αvß3 integrin receptor and exploring both static and dynamic incubation conditions, we studied the benefit of decorating CCPM with different densities of cRGD. We show that incubation time and temperature, as well as the expression levels of αvß3 integrin by target cells, positively influence cRGD-CCPM uptake, as demonstated by immunofluorescence staining and fluorescence microscopy. We demonstrate that even very low decoration densities (i.e., 1 mol % cRGD) result in increased engagement and uptake by target cells as compared to peptide-free control CCPM, and that high cRGD decoration densities do not result in a proportional increase in internalization. In this context, it should be kept in mind that a more extensive presence of targeting ligands on the surface of nanomedicines may affect their pharmacokinetic and biodistribution profile. Thus, we suggest a relatively low cRGD decoration density as most suitable for in vivo application.


Assuntos
Integrina beta3 , Micelas , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Polímeros , Linhagem Celular Tumoral , Peptídeos Cíclicos
4.
Adv Drug Deliv Rev ; 189: 114528, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067968

RESUMO

Intravital microscopy (IVM) expands our understanding of cellular and molecular processes, with applications ranging from fundamental biology to (patho)physiology and immunology, as well as from drug delivery to drug processing and drug efficacy testing. In this review, we highlight modalities, methods and model organisms that make up today's IVM landscape, and we present how IVM - via its high spatiotemporal resolution - enables analysis of metabolites, small molecules, nanoparticles, immune cells, and the (tumor) tissue microenvironment. We furthermore present examples of how IVM facilitates the elucidation of nanomedicine kinetics and targeting mechanisms, as well as of biological processes such as immune cell death, host-pathogen interactions, metabolic states, and disease progression. We conclude by discussing the prospects of IVM clinical translation and examining the integration of machine learning in future IVM practice.


Assuntos
Microscopia Intravital , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
Cells ; 10(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944059

RESUMO

Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematologic malignancies, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), as well as post-PV-MF and post-ET-MF. Progression to more symptomatic disease, such as overt MF or acute leukemia, represents one of the major causes of morbidity and mortality. There are clinically evident but also subclinical types of MPN progression. Clinically evident progression includes evolution from ET to PV, ET to post-ET-MF, PV to post-PV-MF, or pre-PMF to overt PMF, and transformation of any of these subtypes to myelodysplastic neoplasms or acute leukemia. Thrombosis, major hemorrhage, severe infections, or increasing symptom burden (e.g., pruritus, night sweats) may herald progression. Subclinical types of progression may include increases in the extent of bone marrow fibrosis, increases of driver gene mutational allele burden, and clonal evolution. The underlying causes of MPN progression are diverse and can be attributed to genetic alterations and chronic inflammation. Particularly, bystander mutations in genes encoding epigenetic regulators or splicing factors were associated with progression. Finally, comorbidities such as systemic inflammation, cardiovascular diseases, and organ fibrosis may augment the risk of progression. The aim of this review was to discuss types and mechanisms of MPN progression and how their knowledge might improve risk stratification and therapeutic intervention. In view of these aspects, we discuss the potential benefits of early diagnosis using molecular and functional imaging and exploitable therapeutic strategies that may prevent progression, but also highlight current challenges and methodological pitfalls.


Assuntos
Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/diagnóstico , Policitemia Vera/genética , Mielofibrose Primária/genética , Trombocitemia Essencial/genética , Progressão da Doença , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia/diagnóstico , Leucemia/genética , Leucemia/terapia , Mutação/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/terapia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Policitemia Vera/diagnóstico , Policitemia Vera/terapia , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/patologia , Mielofibrose Primária/terapia , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/terapia , Trombose/diagnóstico , Trombose/genética , Trombose/patologia
6.
Adv Drug Deliv Rev ; 175: 113831, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139255

RESUMO

Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.


Assuntos
Fibrose/tratamento farmacológico , Doenças Metabólicas/patologia , Neoplasias/patologia , Viroses/patologia , Animais , Fibrose/diagnóstico , Humanos , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/tratamento farmacológico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Viroses/diagnóstico , Viroses/tratamento farmacológico
7.
Drug Discov Today ; 26(6): 1482-1489, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33617793

RESUMO

Twenty-five years after the approval of the first anticancer nanodrug, we have to start re(de)fining tumor-targeted drug delivery alongside advances in immuno-oncology. Given that cancer is characterized by an immunological imbalance that goes beyond the primary tumor, we should focus on targeting, engaging, and modulating cancer-associated immune cells in the tumor microenvironment (TME), circulation, and immune cell-enriched tissues. When designed and applied rationally, nanomedicines will assist in restoring the immunological equilibrium at the whole-body level, which holds potential not only for cancer therapy, but also for the treatment of a range of other disorders.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Imunoterapia/métodos , Nanomedicina , Nanopartículas , Neoplasias/imunologia , Microambiente Tumoral/imunologia
8.
J Control Release ; 328: 805-816, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33010332

RESUMO

Core-crosslinked polymeric micelles (CCPM) based on PEG-b-pHPMA-lactate are clinically evaluated for the treatment of cancer. We macroscopically and microscopically investigated the biodistribution and target site accumulation of CCPM. To this end, fluorophore-labeled CCPM were intravenously injected in mice bearing 4T1 triple-negative breast cancer (TNBC) tumors, and their localization at the whole-body, tissue and cellular level was analyzed using multimodal and multiscale optical imaging. At the organism level, we performed non-invasive 3D micro-computed tomography-fluorescence tomography (µCT-FLT) and 2D fluorescence reflectance imaging (FRI). At the tissue and cellular level, we performed extensive immunohistochemistry, focusing primarily on cancer, endothelial and phagocytic immune cells. The CCPM achieved highly efficient tumor targeting in the 4T1 TNBC mouse model (18.6 %ID/g), with values twice as high as those in liver and spleen (9.1 and 8.9 %ID/g, respectively). Microscopic analysis of tissue slices revealed that at 48 h post injection, 67% of intratumoral CCPM were localized extracellularly. Phenotypic analyses on the remaining 33% of intracellularly accumulated CCPM showed that predominantly F4/80+ phagocytes had taken up the nanocarrier formulation. Similar uptake patterns were observed for liver and spleen. The propensity of CCPM to primarily accumulate in the extracellular space in tumors suggests that the anticancer efficacy of the formulation mainly results from sustained release of the chemotherapeutic payload in the tumor microenvironment. In addition, their high uptake by phagocytic immune cells encourages potential use for immunomodulatory anticancer therapy. Altogether, the beneficial biodistribution, efficient tumor targeting and prominent engagement of PEG-b-pHPMA-lactate-based CCPM with key cell populations underline the clinical versatility of this clinical-stage nanocarrier formulation.


Assuntos
Micelas , Polímeros , Animais , Linhagem Celular Tumoral , Camundongos , Imagem Óptica , Distribuição Tecidual , Microtomografia por Raio-X
9.
Circ Cardiovasc Imaging ; 13(10): e010586, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33076700

RESUMO

BACKGROUND: Macrophages, innate immune cells that reside in all organs, defend the host against infection and injury. In the heart and vasculature, inflammatory macrophages also enhance tissue damage and propel cardiovascular diseases. METHODS: We here use in vivo positron emission tomography (PET) imaging, flow cytometry, and confocal microscopy to evaluate quantitative noninvasive assessment of cardiac, arterial, and pulmonary macrophages using the nanotracer 64Cu-Macrin-a 20-nm spherical dextran nanoparticle assembled from nontoxic polyglucose. RESULTS: PET imaging using 64Cu-Macrin faithfully reported accumulation of macrophages in the heart and lung of mice with myocardial infarction, sepsis, or pneumonia. Flow cytometry and confocal microscopy detected the near-infrared fluorescent version of the nanoparticle (VT680Macrin) primarily in tissue macrophages. In 5-day-old mice, 64Cu-Macrin PET imaging quantified physiologically more numerous cardiac macrophages. Upon intravenous administration of 64Cu-Macrin in rabbits and pigs, we detected heightened macrophage numbers in the infarcted myocardium, inflamed lung regions, and atherosclerotic plaques using a clinical PET/magnetic resonance imaging scanner. Toxicity studies in rats and human dosimetry estimates suggest that 64Cu-Macrin is safe for use in humans. CONCLUSIONS: Taken together, these results indicate 64Cu-Macrin could serve as a facile PET nanotracer to survey spatiotemporal macrophage dynamics during various physiological and pathological conditions. 64Cu-Macrin PET imaging could stage inflammatory cardiovascular disease activity, assist disease management, and serve as an imaging biomarker for emerging macrophage-targeted therapeutics.


Assuntos
Radioisótopos de Cobre , Dextranos , Coração/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Macrófagos/patologia , Imagem Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/farmacocinética , Dextranos/administração & dosagem , Dextranos/farmacocinética , Modelos Animais de Doenças , Injeções Intravenosas , Pulmão/patologia , Macrófagos Alveolares/patologia , Camundongos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Nanopartículas , Pneumonia/diagnóstico por imagem , Pneumonia/patologia , Valor Preditivo dos Testes , Coelhos , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Suínos , Porco Miniatura , Fatores de Tempo
10.
Cell ; 183(3): 786-801.e19, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125893

RESUMO

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Nanotecnologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animais , Comportamento Animal , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Colesterol/metabolismo , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/efeitos dos fármacos , Imunoterapia , Lipoproteínas HDL/metabolismo , Camundongos Endogâmicos C57BL , Primatas , Distribuição Tecidual/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
11.
Acta Pharmacol Sin ; 41(7): 954-958, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32555445

RESUMO

Cancer nanomedicines have shown promise in combination immunotherapy, thus far mostly preclinically but also already in clinical trials. Combining nanomedicines with immunotherapy aims to reinforce the cancer-immunity cycle, via potentiating key steps in the immune reaction cascade, namely antigen release, antigen processing, antigen presentation, and immune cell-mediated killing. Combination nano-immunotherapy can be realized via three targeting strategies, i.e., by targeting cancer cells, targeting the tumor immune microenvironment, and targeting the peripheral immune system. The clinical potential of nano-immunotherapy has recently been demonstrated in a phase III trial in which nano-albumin paclitaxel (Abraxane®) was combined with atezolizumab (Tecentriq®) for the treatment of patients suffering from advanced triple-negative breast cancer. In the present paper, besides strategies and initial (pre)clinical success stories, we also discuss several key challenges in nano-immunotherapy. Taken together, nanomedicines combined with immunotherapy are gaining significant attention, and it is anticipated that they will play an increasingly important role in clinical cancer therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia , Nanomedicina , Neoplasias/terapia , Humanos , Neoplasias/imunologia , Neoplasias/patologia
12.
ACS Nano ; 14(7): 7832-7846, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32413260

RESUMO

Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles' (NP) in vivo behavior is complex and the immune system's role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for in vivo targeting mechanisms. Dynamic in vivo phenomena such as NPs' real-time targeting kinetics and phagocytes' contribution to active NP targeting remain largely unexplored. To better understand in vivo targeting, monitoring NP accumulation and distribution at complementary levels of spatial and temporal resolution is imperative. Here, we integrate in vivo positron emission tomography/computed tomography imaging with intravital microscopy and flow cytometric analyses to study αvß3-integrin-targeted cyclic arginine-glycine-aspartate decorated liposomes and oil-in-water nanoemulsions in tumor mouse models. We observed that ligand-mediated accumulation in cancerous lesions is multifaceted and identified "NP hitchhiking" with phagocytes to contribute considerably to this intricate process. We anticipate that this understanding can facilitate rational improvement of nanomedicine applications and that immune cell-NP interactions can be harnessed to develop clinically viable nanomedicine-based immunotherapies.


Assuntos
Nanopartículas , Neoplasias , Animais , Integrina alfaV , Integrina alfaVbeta3 , Lipídeos , Camundongos , Neoplasias/tratamento farmacológico , Fagócitos
13.
Theranostics ; 10(4): 1884-1909, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042343

RESUMO

Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes "therapy heterogeneity": a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imagem Multimodal/métodos , Nanomedicina/métodos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Meio Ambiente , Humanos , Imageamento por Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Imagem Óptica/métodos , Seleção de Pacientes , Preparações Farmacêuticas , Ratos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos
14.
Mol Imaging Biol ; 22(3): 486-493, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31650483

RESUMO

PURPOSE: The endeavor of deciphering intricate phenomena within the field of molecular medicine dictates the necessity to investigate tumor/disease microenvironment real-time on cellular level. We, hereby, design simple and robust intravital microscopy strategies, which can be used to elucidate cellular or molecular interactions in a fluorescent mouse model. PROCEDURES: We crossbred transgenic TIE2GFP mice with nude BALB/c mice, allowing the breeding of immunocompetent and immunodeficient mouse models expressing green fluorescent protein (GFP) in vascular endothelium. Then, we surgically exposed various tissues of interest to perform intravital microscopy. RESULTS: By utilizing simple tissue preparation procedures and confocal or two-photon microscopy, we produced high-resolution static snapshots, dynamic sequences, and 3D reconstructions of orthotopically grown mammary tumor, skin inflammation, brain, and muscle. The homogenous detection of GFP expressed by endothelial cells and a combination of fluorescence agents enabled landmarking of tumor microenvironment and precise molecular tagging. CONCLUSION: Simple intravital microscopy procedures on TIE2GFP mice allowed a real-time multi-color visualization of tissue microenvironment, underlining that robust microscopy strategies are relatively simple and can be readily available for many tissues of interest.


Assuntos
Neoplasias da Mama/patologia , Microscopia Intravital/métodos , Microscopia Confocal/métodos , Receptor TIE-2/genética , Animais , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Receptor TIE-2/química , Receptor TIE-2/metabolismo , Microambiente Tumoral
15.
Cancers (Basel) ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717301

RESUMO

Tumor associated macrophages are an essential part of the tumor microenvironment. Consequently, bone marrow-derived monocytes (BMDMs) are continuously recruited to tumors and are therefore seen as ideal delivery vehicles with tumor-targeting properties. By using immune cell depleting agents and macroscopic in vivo fluorescence imaging, we demonstrated that removal of endogenous monocytes and macrophages (but not neutrophils) leads to an increased tumor accumulation of exogenously administered BMDMs. By means of intravital microscopy (IVM), we confirmed our macroscopic findings on a cellular level and visualized in real time the migration of the donor BMDMs in the tumors of living animals. Moreover, IVM also revealed that clodronate-mediated depletion drastically increases the circulation time of the exogenously administered BMDMs. In summary, these new insights illustrate that impairment of the mononuclear phagocyte system increases the circulation time and tumor accumulation of donor BMDMs.

16.
J Control Release ; 308: 197-208, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31195059

RESUMO

Doxorubicin is a clinically important anthracycline chemotherapeutic agent that is used to treat many cancers. Nanomedicine formulations including Doxil® and ThermoDox® have been developed to mitigate doxorubicin cardiotoxicity. Doxil is used clinically to treat ovarian cancer, AIDS-related Kaposi's sarcoma, and multiple myeloma, but there is evidence that therapeutic efficacy is hampered by lack of drug release. ThermoDox is a lipid-based heat-activated formulation of doxorubicin that relies on externally applied energy to increase tissue temperatures and efficiently trigger drug release, thereby affording therapeutic advantages compared to Doxil. However, elevating tissue temperatures is a complex treatment process requiring significant time, cost, and expertise compared to standard intravenous chemotherapy. This work endeavors to develop a companion therapeutic to ThermoDox that also relies on heat-triggered release in order to increase the therapeutic index of doxorubicin. To this end, a thermosensitive liposome formulation of the heat shock protein 90 inhibitor alvespimycin has been developed and characterized. This research demonstrates that both doxorubicin and alvespimycin are potent anti-cancer agents and that heat amplifies their cytotoxic effects. Furthermore, the two drugs are proven to act synergistically when cancer cells are treated with the drugs in combination. The formulation of alvespimycin was rationally designed to exhibit similar pharmacokinetics and drug release kinetics compared to ThermoDox, enabling the two drugs to be delivered to heated tumors at similar efficiencies resulting in control of a particular synergistic ratio of drugs. In vivo measurements demonstrated effective heat-mediated triggering of doxorubicin and alvespimycin release from thermosensitive liposomes within tumor vasculature. This treatment strategy resulted in a ~10-fold increase in drug concentration within tumors compared to free drug administered without tumor heating.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzoquinonas/administração & dosagem , Sistemas de Liberação de Medicamentos , Lactamas Macrocíclicas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Feminino , Temperatura Alta , Humanos , Lipossomos , Camundongos , Camundongos SCID
17.
Adv Drug Deliv Rev ; 122: 20-30, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257998

RESUMO

Paclitaxel (PTX) is one of the three most widely used chemotherapeutic agents, together with doxorubicin and cisplatin, and is first or second line treatment for several types of cancers. In 2000, Taxol, the conventional formulation of PTX, became the best-selling cancer drug of all time with annual sales of 1.6 billion. In 2005, the introduction of the albumin-based formulation of PTX, known as Abraxane, ended Taxol's monopoly of the PTX market. Abraxane's ability to push the Taxol innovator and generic formulations aside attracted fierce competition amongst competitors worldwide to develop their own unique, new and improved formulation of PTX. At this time there are at least 18 companies focused on pre-clinical and/or clinical development of nano-formulations of PTX. These pharmaceutical companies are investing substantial capital to capture a share of the lucrative global PTX market. It is hoped that any formulation that dominates the market will result in tangible benefits to patients in terms of both survival and quality of life. Given all of this activity, here we address the question: Who is going to win the battle of "nano" paclitaxel?


Assuntos
Nanopartículas/química , Neoplasias/tratamento farmacológico , Paclitaxel/química , Paclitaxel/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA