Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Open J Eng Med Biol ; 5: 66-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487096

RESUMO

GOAL: Microbubbles (MBs) are known to occur within the circuits of cardiopulmonary bypass (CPB) systems, and higher-order dysfunction after cardiac surgery may be caused by MBs as well as atheroma dispersal associated with cannula insertion. As complete MB elimination is not possible, monitoring MB count rates is critical. We propose an online detection system with a neural network-based model to estimate MB count rate using five parameters: suction flow rate, venous reservoir level, perfusion flow rate, hematocrit level, and blood temperature. METHODS: Perfusion experiments were performed using an actual CPB circuit, and MB count rates were measured using the five varying parameters. RESULTS: Bland-Altman analysis indicated a high estimation accuracy (R2 > 0.95, p < 0.001) with no significant systematic error. In clinical practice, although the inclusion of clinical procedures slightly decreased the estimation accuracy, a high coefficient of determination for 30 clinical cases (R2 = 0.8576) was achieved between measured and estimated MB count rates. CONCLUSIONS: Our results highlight the potential of this system to improve patient outcomes and reduce MB-associated complication risk.

2.
IEEE J Transl Eng Health Med ; 11: 435-440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534100

RESUMO

Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery, providing the ability to temporarily replace cardiopulmonary function and create a bloodless surgical field. Traditionally, the operation of CPB systems has depended on the expertise and experience of skilled perfusionists. In particular, simultaneously controlling the arterial and venous occluders is difficult because the blood flow rate and reservoir level both change, and failure may put the patient's life at risk. This study proposes an automatic control system with a two-degree-of-freedom model matching controller nested in an I-PD feedback controller to simultaneously regulate the blood flow rate and reservoir level. CPB operations were performed using glycerin and bovine blood as perfusate to simulate flow-up and flow-down phases. The results confirmed that the arterial blood flow rate followed the manually adjusted target venous blood flow rate, with an error of less than 5.32%, and the reservoir level was maintained, with an error of less than 3.44% from the target reservoir level. Then, we assessed the robustness of the control system against disturbances caused by venting/suction of blood. The resulting flow rate error was 5.95%, and the reservoir level error 2.02%. The accuracy of the proposed system is clinically satisfactory and within the allowable error range of 10% or less, meeting the standards set for perfusionists. Moreover, because of the system's simple configuration, consisting of a camera and notebook PC, the system can easily be integrated with general CPB equipment. This practical design enables seamless adoption in clinical settings. With these advancements, the proposed system represents a significant step towards the automation of CPB.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar , Humanos , Animais , Bovinos , Cateteres de Demora , Máquina Coração-Pulmão
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 617-620, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085601

RESUMO

The cardiopulmonary bypass system used in cardiac surgery can generate microbubbles (MBs) that may cause complications, such as neurocognitive dysfunction, when delivered into the blood vessel. Estimating the number of MBs generated, thus, is necessary to enable the surgeons to deal with it. To this end, we previously proposed a neural network-based model for estimating the number of MBs from four factors measurable from the cardiopulmonary bypass system: suction flow rate, venous reservoir level, blood viscosity, and perfusion flow rate. However, the model has not been adapted to the data collected from actual surgery cases. In this study, the accuracy of MBs estimated by the proposed model was examined in four clinical cases. The results showed that the coefficient of determination between estimated MBs and the measured MBs throughout the surgeries was R2=0.558 (p<0.001). We found that the surgical treatments, such as administration of drugs, fluids and blood transfusions, increased the number of measured MBs. The coefficient of determination increased to R2= 0.8762 (p<0.001) by excluding the duration of these treatments. This result indicates that the model can estimate the number of MBs with high accuracy under the clinical environment.


Assuntos
Disfunção Cognitiva , Microbolhas , Viscosidade Sanguínea , Ponte Cardiopulmonar , Humanos , Redes Neurais de Computação
4.
Sci Rep ; 11(1): 549, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436919

RESUMO

The need for the estimation of the number of microbubbles (MBs) in cardiopulmonary bypass surgery has been recognized among surgeons to avoid postoperative neurological complications. MBs that exceed the diameter of human capillaries may cause endothelial disruption as well as microvascular obstructions that block posterior capillary blood flow. In this paper, we analyzed the relationship between the number of microbubbles generated and four circulation factors, i.e., intraoperative suction flow rate, venous reservoir level, continuous blood viscosity and perfusion flow rate in cardiopulmonary bypass, and proposed a neural-networked model to estimate the number of microbubbles with the factors. Model parameters were determined in a machine-learning manner using experimental data with bovine blood as the perfusate. The estimation accuracy of the model, assessed by tenfold cross-validation, demonstrated that the number of MBs can be estimated with a determinant coefficient R2 = 0.9328 (p < 0.001). A significant increase in the residual error was found when each of four factors was excluded from the contributory variables. The study demonstrated the importance of four circulation factors in the prediction of the number of MBs and its capacity to eliminate potential postsurgical complication risks.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Embolia Aérea/etiologia , Embolia Aérea/prevenção & controle , Microbolhas , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Redes Neurais de Computação , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Viscosidade Sanguínea , Capilares , Procedimentos Cirúrgicos Cardiovasculares/efeitos adversos , Embolia Aérea/diagnóstico , Hemodinâmica , Humanos , Microbolhas/efeitos adversos
5.
J Neurosurg ; 128(5): 1280-1288, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28686117

RESUMO

OBJECTIVE Carotid artery stenting (CAS) has been considered to prevent ischemic strokes caused by stenosis of the cervical carotid artery. The most common complication of CAS is new cerebral infarction. The authors have previously reported that the jellyfish sign-the rise and fall of the mobile component of the carotid plaque surface detected by carotid ultrasonography-suggests thinning and rupture of the fibrous cap over the unstable plaque content, such as the lipid-rich necrotic core or internal plaque hemorrhage. The authors' aim in the present study was to evaluate the risk of a new ischemic lesion after CAS by using many risk factors including calcification (size and location) and the jellyfish sign. METHODS Eighty-six lesions (77 patients) were treated with CAS. The presence of ischemic stroke was determined using diffusion-weighted imaging (DWI). Risk factors included calcification of the plaque (classified into 5 groups for size and 3 groups for location) and the jellyfish sign, among others. Multiple linear regression analysis (stepwise analysis and partial least squares [PLS] analysis) was conducted, followed by a machine learning analysis using an artificial neural network (ANN) based on the log-linearized gaussian mixture network (LLGMN). The additive effects of the jellyfish sign and calcification on ischemic stroke after CAS were examined using the Kruskal-Wallis test, followed by the Steel-Dwass test. RESULTS The stepwise analysis selected the jellyfish sign, proximal calcification (proximal Ca), low-density lipoprotein (LDL) cholesterol, and patient age for the prediction model to predict new DWI lesions. The PLS analysis revealed the same top 3 variables (jellyfish sign, proximal Ca, and LDL cholesterol) according to the variable importance in projection scores. The ANN was then used, showing that these 3 variables remained. The accuracy of the ANN improved; areas under the receiver operating characteristic curves of the stepwise analysis, the PLS analysis, and the ANN were 0.719, 0.727, and 0.768, respectively. The combination of the jellyfish sign and proximal Ca indicates a significantly increased risk for ischemic stroke after CAS. CONCLUSIONS The jellyfish sign, proximal Ca, and LDL cholesterol were considered to be important predictors for new DWI lesions after CAS. These 3 factors can be easily determined during a standard clinical visit. Thus, these 3 variables-especially the jellyfish sign and proximal Ca-may be useful for reducing the ischemic stroke risk in patients with stenosis of the cervical carotid artery.


Assuntos
Isquemia Encefálica/diagnóstico , Calcinose/cirurgia , Estenose das Carótidas/cirurgia , Complicações Pós-Operatórias/diagnóstico , Stents , Acidente Vascular Cerebral/diagnóstico , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/etiologia , Calcinose/diagnóstico por imagem , Calcinose/epidemiologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/cirurgia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/epidemiologia , LDL-Colesterol/sangue , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Prognóstico , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA