Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22955, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151523

RESUMO

Zika virus infection causes multiple clinical issues, including Guillain-Barré syndrome and neonatal malformation. Vaccination is considered as the only strategy for the prevention of ZIKV-induced clinical issues. This study developed a plant-based recombinant vaccine that transiently expressed the ZIKV envelope protein (ZikaEnv:aghFc) in Nicotiana benthamiana and evaluated the protective immunity afforded by it in immunocompetent mice. ZikaEnv:aghFc induced both humoral and cellular immunity at a low dose (1-5 µg). This immune-inducing potential was enhanced further when adjuvanted CIA09A. In addition, antigen-specific antibodies and neutralizing antibodies were vertically transferred from immunized females to their progeny and afforded both protective immunity to ZIKV and cross-protection to Dengue virus infection. These results suggest that our plant-based ZIKV vaccine provides a safe and efficient protective strategy with a competitive edge.


Assuntos
Vacinas Virais , Infecção por Zika virus , Zika virus , Feminino , Animais , Camundongos , Proteínas do Envelope Viral/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Vet Med Sci ; 9(6): 2703-2710, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37665771

RESUMO

BACKGROUND: The objective of this field trial was to evaluate the efficacy of a new plant-based porcine circovirus type 2a (PCV2a) vaccine. This vaccine was a recombinant capsid subunit PCV2a vaccine based on the Nicotiana benthamiana expression system. METHODS: Three farms were selected for the study based on their history of subclinical PCV2 infection. A total of 40 18-day-old pigs were randomly allocated to either vaccinated or unvaccinated groups (20 pigs per group; 10 = male and 10 = female). Pigs received a 2.0-mL dose of the plant-based PCV2a vaccine intramuscularly at 21 days of age in accordance with the manufacturer's recommendations, whereas unvaccinated pigs were administered a single dose of phosphate buffered-saline at the same age. RESULTS: Vaccination had a positive effect on pig growth performance compared to that of unvaccinated pigs on all three of the farms. Vaccination of pigs with a plant-based PCV2a vaccine induced high levels of neutralizing antibodies titres against PCV2d and PCV2d-specific interferon-γ secreting cells which resulted in the reduction of PCV2d viral load and reduced lymphoid lesions severity. CONCLUSIONS: The results of this field trial demonstrated cross-protection of PCV2d by a plant-based PCV2a vaccine and a positive effect of pig growth performance with vaccination.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Doenças dos Suínos/prevenção & controle , Infecções Assintomáticas , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária
3.
Clin Exp Vaccine Res ; 11(3): 285-289, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36451664

RESUMO

Various vaccines have been developed to fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic. However, new variants of SARS-CoV-2 undermine the effort to fight SARS-CoV-2. Here, we produced S proteins harboring the receptor-binding domain (RBD) of the Omicron variant in plants. Plant-produced S proteins together with adjuvant CIA09A triggered strong immune responses in mice. Antibodies in serum inhibited interaction of recombinant human angiotensin-converting enzyme 2 with RBD of the Omicron variant, but not RBD of other variants. These results suggest that antibodies induced by RBD of the Omicron variant are highly specific for the Omicron RBD, but not for that of other variants.

4.
Plant Biotechnol J ; 20(12): 2298-2312, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36062974

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Camundongos , Animais , Humanos , Nicotiana/genética , SARS-CoV-2 , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Camundongos Endogâmicos BALB C , Anticorpos Neutralizantes , Imunidade , Mamíferos
5.
J Integr Plant Biol ; 63(8): 1505-1520, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34051041

RESUMO

Influenza epidemics frequently and unpredictably break out all over the world, and seriously affect the breeding industry and human activity. Inactivated and live attenuated viruses have been used as protective vaccines but exhibit high risks for biosafety. Subunit vaccines enjoy high biosafety and specificity but have a few weak points compared to inactivated virus or live attenuated virus vaccines, especially in low immunogenicity. In this study, we developed a new subunit vaccine platform for a potent, adjuvant-free, and multivalent vaccination. The ectodomains of hemagglutinins (HAs) of influenza viruses were expressed in plants as trimers (tHAs) to mimic their native forms. tHAs in plant extracts were directly used without purification for binding to inactivated Lactococcus (iLact) to produce iLact-tHAs, an antigen-carrying bacteria-like particle (BLP). tHAs BLP showed strong immune responses in mice and chickens without adjuvants. Moreover, simultaneous injection of two different antigens by two different formulas, tHAH5N6 + H9N2 BLP or a combination of tHAH5N6 BLP and tHAH9N2 BLP, led to strong immune responses to both antigens. Based on these results, we propose combinations of plant-based antigen production and BLP-based delivery as a highly potent and cost-effective platform for multivalent vaccination for subunit vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Lactococcus/virologia , Nicotiana/genética , Vacinas Combinadas/imunologia , Animais , Antígenos Virais/imunologia , Galinhas/imunologia , Retículo Endoplasmático/metabolismo , Hemaglutininas/química , Hemaglutininas/metabolismo , Imunidade/efeitos dos fármacos , Imunização , Camundongos , Extratos Vegetais/isolamento & purificação , Plantas Geneticamente Modificadas , Domínios Proteicos , Multimerização Proteica
6.
Biochem Biophys Res Commun ; 559: 161-167, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33940388

RESUMO

VLPs are virus-like particles that comprise viral capsid proteins that can self-assemble and mimic the shape and size of real viral particles; however, because they do not contain genetic material they cannot infect host cells. VLPs have great potential as safe drug/vehicle candidates; therefore, they are gaining popularity in the field of preventive medicine and therapeutics. Indeed, extensive studies are underway to examine their role as carriers for immunization and as vehicles for delivery of therapeutic agents. Here, we examined the possibility of developing VLP-utilizing technology based on an efficient VLP production process and high-resolution structural analysis. Nicotiana benthamiana was used as an expression platform to produce the coat protein of the alfalfa mosaic virus (AMV-CP). About 250 mg/kg of rAMV-CP was produced from Nicotiana benthamiana leaves. Structural analysis revealed that the oligomeric status of rAMV-CP changed according to the composition and pH of the buffer. Size exclusion chromatography and electron microscopy analysis confirmed the optimal conditions for rAMV-CP VLP formation, and a 2.4 Å resolution structure was confirmed by cryo-EM analysis. Based on the efficient protein production, VLP manufacturing technology, and high-resolution structure presented herein, we suggest that rAMV-CP VLP is a useful platform for development of various new drugs.


Assuntos
Vírus do Mosaico da Alfafa/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Nicotiana/virologia , Vírus do Mosaico da Alfafa/química , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
7.
N Biotechnol ; 63: 29-36, 2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-33667631

RESUMO

Porcine circovirus type 2 (PCV2) is a non-enveloped, icosahedral virus of the Circoviridae family, with a small, circular, single-stranded DNA genome. PCV2 infections cause substantial economic losses in the pig industry worldwide. Currently, commercially produced PCV2 vaccines are expensive, whereas plant-based expression systems can produce recombinant proteins at low cost for use as vaccines. In this study, recombinant PCV2 capsid protein (rCap) was transiently expressed in Nicotiana benthamiana and purified by metal affinity chromatography, with a yield of 102 mg from 1 kg plant leaves. Electron microscopy confirmed that purified rCap self-assembled into virus-like particles (VLPs) at neutral pH. It was shown to provoke a strong immune response in guinea pigs. The results indicate that plant systems can enable production of large amounts of proteins to serve as candidates for subunit vaccines.


Assuntos
Anticorpos Neutralizantes/biossíntese , Proteínas do Capsídeo/biossíntese , Circovirus/química , Nicotiana/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Animais , Anticorpos Neutralizantes/química , Proteínas do Capsídeo/química , Cobaias , Nicotiana/química , Vacinas de Partículas Semelhantes a Vírus/química
8.
Biotechnol Lett ; 42(7): 1247-1261, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32323080

RESUMO

Classical swine fever (CSF) is one of the most important viral diseases of swine worldwide. Although live or attenuated virus vaccines have been used to control CSFV, it is difficult to distinguish vaccinated pigs from infected pigs; this leads to restrictions on import and export. Subunit vaccines based on the CSFV E2 glycoprotein have been developed using baculovirus or insect cell systems, but some weaknesses remain. Here, we describe production of an E2 recombinant protein using a Nicotiana benthamiana plant expression system. To do this, we took advantage of the ability of the swine Fc domain to increase solubility and stability of the fusion protein and to strengthen immune responses in target animals. N. benthamiana expressed high amounts of pFc2-fused E2 proteins, which were isolated and purified by affinity chromatography to yield a high pure recombinant protein in a cost-effective manner. Native-polyacrylamide gel electrophoresis and size exclusion chromatography confirmed that the pmE2:pFc2 fusion exists as a multimer rather than as a dimer. Injection of recombinant pmE2 protein into mice or piglets generated anti-pmE2 antibodies with efficient neutralizing activity against CSFV. These results suggest that a purified recombinant E2 protein produced in N. benthamiana generates high titers of neutralizing antibodies in vivo; as such, the protein could be developed as a subunit vaccine against CSFV.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Febre Suína Clássica/imunologia , Nicotiana/metabolismo , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Camundongos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Suínos , Nicotiana/genética , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
9.
Vaccines (Basel) ; 8(2)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325740

RESUMO

Tuberculosis (TB) is one of the deadliest infectious diseases worldwide and is caused by Mycobacterium tuberculosis (Mtb). An effective vaccine to prevent TB is considered the most cost-effective measure for controlling this disease. Many different vaccine antigen (Ag) candidates, including well-known and newly identified Ags, have been evaluated in clinical and preclinical studies. In this study, we took advantage of a plant system of protein expression using Nicotiana benthamiana to produce N-glycosylated antigen 85A (G-Ag85A), which is one of the most well-characterized vaccine Ag candidates in the field of TB vaccines, and compared its immunogenicity and vaccine efficacy with those of nonglycosylated Ag85A (NG-Ag85A) produced with an Escherichia coli system. Notably, G-Ag85A induced a more robust IFN-γ response than NG-Ag85A, which indicated that G-Ag85A is well recognized by the host immune system during Mtb infection. We subsequently compared the vaccine potential of G-Ag85A and NG-Ag85A by evaluating their immunological features and substantial protection efficacies. Interestingly, G-Ag85A yielded moderately enhanced long-term protective efficacy, as measured in terms of bacterial burden and lung inflammation. Strikingly, G-Ag85A-immunized mice showed a more balanced proportion of multifunctional Th1-biased immune responses with sustained IFN-γ response than did NG-Ag85A-immunized mice. Collectively, plant-derived G-Ag85A could induce protective and balanced Th1 responses and confer long-term protection against a hypervirulent Mtb Beijing strain infection, which indicated that plant-produced G-Ag85A might provide an excellent example for the production of an Mtb subunit vaccine Ag and could be an effective platform for the development of anti-TB vaccines.

10.
Plant Cell Rep ; 38(12): 1485-1499, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31432212

RESUMO

KEY MESSAGE: We produced a biologically active phage-encoded endolysin, LysP11, in N. benthamiana. Plant-produced LysP11 exhibited robust antimicrobial activity against E. rhusiopathiae, and C-terminal domain of LysP11 bound specifically to E. rhusiopathiae. Bacterial resistance to antibiotics, a serious issue in terms of global public health, is one of the leading causes of death today. Thus, new antimicrobial agents are needed to combat pathogens. Recent research suggests that bacteriophages and endolysins derived from bacteriophages are potential alternatives to traditional antibiotics. Here, we examined the antimicrobial activity of LysP11, which is encoded by Propionibacterium phage P1.1 and comprises an N-terminal amidase-2 domain and a C-terminal domain with no homology to other bacteriophage endolysins. LysP11 was produced in Nicotiana benthamiana (N. benthamiana) using an Agrobacterium-mediated transient expression strategy. LysP11 was purified on microcrystalline cellulose-binding resin after attachment of the Clostridium thermocellum-derived family 3 cellulose-binding domain as an affinity tag. The affinity tag was removed using the small ubiquitin-related modifier (SUMO) domain and SUMO-specific protease. Plant-produced LysP11 showed strong antimicrobial activity toward Erysipelothrix rhusiopathiae (E. rhusiopathiae), mediated via lysis of the cell wall. Lytic activity was optimal at pH 8.0-9.0 (37 °C) and increased at higher concentrations of NaCl up to 400 mM. Furthermore, the C-terminal domain of LysP11 bound specifically to the E. rhusiopathiae cell wall. Based on these results, we propose that LysP11 is a potential candidate antimicrobial agent against E. rhusiopathiae.


Assuntos
Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Erysipelothrix/efeitos dos fármacos , Nicotiana/metabolismo , Parede Celular/metabolismo
11.
Front Plant Sci ; 10: 624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156681

RESUMO

Classical swine fever virus (CSFV) is highly contagious, and fatal to infected pigs. Vaccines against CSFV have been developed from attenuated or modified live viruses. These vaccines are effective for immunization of animals, but they are associated with problems such as the accidental spreading of viruses to animals in the field, and with barriers to trade following vaccination. Here, we report the generation of transgenic Nicotiana benthamiana plants for large-scale, cost-effective production of E2 fusion protein for use as a recombinant vaccine against CSFV in pigs. Transgenic N. benthamiana plants harboring an intergenic, single-copy insertion of a chimeric gene encoding E2 fusion protein had high levels of transgene expression. For large-scale production of E2 fusion protein from leaf tissues, we developed a protein-purification protocol consisting of cellulose-binding domain (CBD)-cellulose-based affinity purification and size-exclusion gel-filtration chromatography. E2 fusion proteins showed high immunogenicity in piglets and provided protection against CSFV challenge. The CBD in the E2 fusion protein was also highly immunogenic. These results suggest that plant-produced recombinant E2 fusion proteins can be developed into cost-effective vaccines against CSFV, with the CBD as a marker antigen to differentiate between vaccination and natural infection.

12.
Am J Chin Med ; 46(4): 853-873, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29737207

RESUMO

The oxidative damage initiated by reactive oxygen species (ROS) is a major contributor to the functional decline and disability that characterizes aging. The anti-oxidant flavonoid, quercetin, is a plant polyphenol that may be beneficial for retarding the aging process. We examined the restoring properties of quercetin on human dermal fibroblasts (HDFs). Quercetin directly reduced either intracellular or extracellular ROS levels in aged HDFs. To find the aging-related target genes by quercetin, microarray analysis was performed and two up-regulated genes LPL and KCNE2 were identified. Silencing LPL increased the expression levels of senescence proteins such as p16INK4A and p53 and silencing KCNE2 reversed gene expressions of EGR1 and p-ERK in quercetin-treated aged HDFs. Silencing of LPL and KCNE2 decreased the expression levels of anti-oxidant enzymes such as superoxide dismutase and catalase. Also, the mitochondrial dysfunction in aged HDFs was ameliorated by quercetin treatment. Taken together, these results suggest that quercetin has restoring effect on the cellular senescence by down-regulation of senescence activities and up-regulation of the gene expressions of anti-oxidant enzymes in aged HDFs.


Assuntos
Antioxidantes/farmacologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Quercetina/farmacologia , Catalase/metabolismo , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
Mol Plant ; 9(4): 501-13, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26712506

RESUMO

Rhizosphere acidification is essential for iron (Fe) uptake into plant roots. Plasma membrane (PM) H(+)-ATPases play key roles in rhizosphere acidification. However, it is not fully understood how PM H(+)-ATPase activity is regulated to enhance root Fe uptake under Fe-deficient conditions. Here, we present evidence that cytochrome b5 reductase 1 (CBR1) increases the levels of unsaturated fatty acids, which stimulate PM H(+)-ATPase activity and thus lead to rhizosphere acidification. CBR1-overexpressing (CBR1-OX) Arabidopsis thaliana plants had higher levels of unsaturated fatty acids (18:2 and 18:3), higher PM H(+)-ATPase activity, and lower rhizosphere pH than wild-type plants. By contrast, cbr1 loss-of-function mutant plants showed lower levels of unsaturated fatty acids and lower PM H(+)-ATPase activity but higher rhizosphere pH. Reduced PM H(+)-ATPase activity in cbr1 could be restored in vitro by addition of unsaturated fatty acids. Transcript levels of CBR1, fatty acids desaturase2 (FAD2), and fatty acids desaturase3 (FAD3) were increased under Fe-deficient conditions. We propose that CBR1 has a crucial role in increasing the levels of unsaturated fatty acids, which activate the PM H(+)-ATPase and thus reduce rhizosphere pH. This reaction cascade ultimately promotes root Fe uptake.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocromo-B(5) Redutase/metabolismo , Ferro/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Citocromo-B(5) Redutase/genética , Espaço Extracelular/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , ATPases Translocadoras de Prótons/metabolismo , Rizosfera , Sementes/metabolismo , Solo/química , Solubilidade , Regulação para Cima
14.
Environ Sci Technol ; 48(6): 3477-85, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24579868

RESUMO

In this study, we investigated the effect of nZVI on plant root elongation in Arabidopsis thaliana and showed, for the first time, that nZVI enhanced root elongation by inducing OH radical-induced cell wall loosening. Exposure of plants to 0.5 g/L nZVI enhanced root elongation by 150-200% over that in the control, and further mechanistic studies showed that this occurred via nZVI-mediated OH radical-induced cell wall loosening. The oxidation capacity of nZVI, leading to release of H2O2, allowed it to cause OH radical-induced cell wall loosening in roots. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometers (MALDI-TOFMS)-based analysis clearly revealed that pectin-polysaccharides in roots were degraded; they are one of the main matrix-polysaccharide-connecting and load-bearing polymers in cell walls. Rapid root elongation led to structural changes in root cell walls: reduction of cell wall thickness and a bias on the orientation of cellulose microfibrils. Additionally, the asymmetrical distribution of tensional strength resulted from the OH radical-induced cell wall loosening enhanced endocytosis. These findings emphasize that OH radical-induced cell wall loosening is important for mechanical regulation of the cell wall and provide new insights into the cellular responses of plants exposed to reactive metal nanoparticles.


Assuntos
Arabidopsis/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Ferro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Ferro/química , Nanopartículas Metálicas/química , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento
15.
Nat Biotechnol ; 21(8): 914-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12872132

RESUMO

We have studied the utility of the yeast protein YCF1, which detoxifies cadmium by transporting it into vacuoles, for the remediation of lead and cadmium contamination. We found that the yeast YCF1-deletion mutant DTY167 was hypersensitive to Pb(II) as compared with wild-type yeast. DTY167 cells overexpressing YCF1 were more resistant to Pb(II) and Cd(II) than were wild-type cells, and accumulated more lead and cadmium. Analysis of transgenic Arabidopsis thaliana plants overexpressing YCF1 showed that YCF1 is functionally active and that the plants have enhanced tolerance of Pb(II) and Cd(II) and accumulated greater amounts of these metals. These results suggest that transgenic plants expressing YCF1 may be useful for phytoremediation of lead and cadmium.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cádmio/farmacocinética , Tolerância a Medicamentos/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Engenharia Genética/métodos , Chumbo/farmacocinética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Biodegradação Ambiental , Clonagem Molecular , Melhoramento Genético/métodos , Resíduos Industriais/prevenção & controle , Plantas Geneticamente Modificadas/metabolismo , Eliminação de Resíduos/métodos , Proteínas de Saccharomyces cerevisiae/genética , Poluentes do Solo/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA