Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(6): 1921-1948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064875

RESUMO

Lysophosphatidic acid (LPA) species accumulate in the ascites of ovarian high-grade serous cancer (HGSC) and are associated with short relapse-free survival. LPA is known to support metastatic spread of cancer cells by activating a multitude of signaling pathways via G-protein-coupled receptors of the LPAR family. Systematic unbiased analyses of the LPA-regulated signal transduction network in ovarian cancer cells have, however, not been reported to date. Methods: LPA-induced signaling pathways were identified by phosphoproteomics of both patient-derived and OVCAR8 cells, RNA sequencing, measurements of intracellular Ca2+ and cAMP as well as cell imaging. The function of LPARs and downstream signaling components in migration and entosis were analyzed by selective pharmacological inhibitors and RNA interference. Results: Phosphoproteomic analyses identified > 1100 LPA-regulated sites in > 800 proteins and revealed interconnected LPAR1, ROCK/RAC, PKC/D and ERK pathways to play a prominent role within a comprehensive signaling network. These pathways regulate essential processes, including transcriptional responses, actomyosin dynamics, cell migration and entosis. A critical component of this signaling network is MYPT1, a stimulatory subunit of protein phosphatase 1 (PP1), which in turn is a negative regulator of myosin light chain 2 (MLC2). LPA induces phosphorylation of MYPT1 through ROCK (T853) and PKC/ERK (S507), which is majorly driven by LPAR1. Inhibition of MYPT1, PKC or ERK impedes both LPA-induced cell migration and entosis, while interference with ROCK activity and MLC2 phosphorylation selectively blocks entosis, suggesting that MYPT1 figures in both ROCK/MLC2-dependent and -independent pathways. We finally show a novel pathway governed by LPAR2 and the RAC-GEF DOCK7 to be indispensable for the induction of entosis. Conclusion: We have identified a comprehensive LPA-induced signal transduction network controlling LPA-triggered cytoskeletal changes, cell migration and entosis in HGSC cells. Due to its pivotal role in this network, MYPT1 may represent a promising target for interfering with specific functions of PP1 essential for HGSC progression.


Assuntos
Actomiosina , Neoplasias Ovarianas , Humanos , Feminino , Actomiosina/metabolismo , Entose , Recidiva Local de Neoplasia , Transdução de Sinais , Neoplasias Ovarianas/metabolismo , Movimento Celular/fisiologia
2.
Cancer Gene Ther ; 29(12): 1975-1987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35902728

RESUMO

Silencing of the Apoptosis associated Tyrosine Kinase gene (AATK) has been described in cancer. In our study, we specifically investigated the epigenetic inactivation of AATK in pancreatic adenocarcinoma, lower grade glioma, lung, breast, head, and neck cancer. The resulting loss of AATK correlates with impaired patient survival. Inhibition of DNA methyltransferases (DNMTs) reactivated AATK in glioblastoma and pancreatic cancer. In contrast, epigenetic targeting via the CRISPR/dCas9 system with either EZH2 or DNMT3A inhibited the expression of AATK. Via large-scale kinomic profiling and kinase assays, we demonstrate that AATK acts a Ser/Thr kinase that phosphorylates TP53 at Ser366. Furthermore, whole transcriptome analyses and mass spectrometry associate AATK expression with the GO term 'regulation of cell proliferation'. The kinase activity of AATK in comparison to the kinase-dead mutant mediates a decreased expression of the key cell cycle regulators Cyclin D1 and WEE1. Moreover, growth suppression through AATK relies on its kinase activity. In conclusion, the Ser/Thr kinase AATK represses growth and phosphorylates TP53. Furthermore, expression of AATK was correlated with a better patient survival for different cancer entities. This data suggests that AATK acts as an epigenetically inactivated tumor suppressor gene.


Assuntos
Adenocarcinoma , Proteínas Reguladoras de Apoptose , Neoplasias Pancreáticas , Proteínas Tirosina Quinases , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Pancreáticas
3.
Clin Transl Med ; 11(11): e633, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841720

RESUMO

BACKGROUND: Transcoelomic spread is the major route of metastasis of ovarian high-grade serous carcinoma (HGSC) with the omentum as the major metastatic site. Its unique tumour microenvironment with its large populations of adipocytes, mesothelial cells and immune cells establishes an intercellular signaling network that is instrumental for metastatic growth yet poorly understood. METHODS: Based on transcriptomic analysis of tumour cells, tumour-associated immune and stroma cells we defined intercellular signaling pathways for 284 cytokines and growth factors and their cognate receptors after bioinformatic adjustment for contaminating cell types. The significance of individual components of this network was validated by analysing clinical correlations and potentially pro-metastatic functions, including tumour cell migration, pro-inflammatory signal transduction and TAM expansion. RESULTS: The data show an unexpected prominent role of host cells, and in particular of omental adipocytes, mesothelial cells and fibroblasts (CAF), in sustaining this signaling network. These cells, rather than tumour cells, are the major source of most cytokines and growth factors in the omental microenvironment (n = 176 vs. n = 13). Many of these factors target tumour cells, are linked to metastasis and are associated with a short survival. Likewise, tumour stroma cells play a major role in extracellular-matrix-triggered signaling. We have verified the functional significance of our observations for three exemplary instances. We show that the omental microenvironment (i) stimulates tumour cell migration and adhesion via WNT4 which is highly expressed by CAF; (ii) induces pro-tumourigenic TAM proliferation in conjunction with high CSF1 expression by omental stroma cells and (iii) triggers pro-inflammatory signaling, at least in part via a HSP70-NF-κB pathway. CONCLUSIONS: The intercellular signaling network of omental metastases is majorly dependent on factors secreted by immune and stroma cells to provide an environment that supports ovarian HGSC progression. Clinically relevant pathways within this network represent novel options for therapeutic intervention.


Assuntos
Redes Reguladoras de Genes/fisiologia , Metástase Neoplásica/fisiopatologia , Neoplasias Ovarianas/fisiopatologia , Movimento Celular/genética , Movimento Celular/fisiologia , Feminino , Redes Reguladoras de Genes/genética , Humanos , Metástase Neoplásica/imunologia , Neoplasias Ovarianas/imunologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Theranostics ; 11(3): 1377-1395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391540

RESUMO

Arachidonic acid (AA) is a polyunsaturated fatty acid present at high concentrations in the ovarian cancer (OC) microenvironment and associated with a poor clinical outcome. In the present study, we have unraveled a potential link between AA and macrophage functions. Methods: AA-triggered signal transduction was studied in primary monocyte-derived macrophages (MDMs) by phosphoproteomics, transcriptional profiling, measurement of intracellular Ca2+ accumulation and reactive oxygen species production in conjunction with bioinformatic analyses. Functional effects were investigated by actin filament staining, quantification of macropinocytosis and analysis of extracellular vesicle release. Results: We identified the ASK1 - p38δ/α (MAPK13/14) axis as a central constituent of signal transduction pathways triggered by non-metabolized AA. This pathway was induced by the Ca2+-triggered activation of calmodulin kinase II, and to a minor extent by ROS generation in a subset of donors. Activated p38 in turn was linked to a transcriptional stress response associated with a poor relapse-free survival. Consistent with the phosphorylation of the p38 substrate HSP27 and the (de)phosphorylation of multiple regulators of Rho family GTPases, AA impaired actin filament organization and inhibited actin-driven macropinocytosis. AA also affected the phosphorylation of proteins regulating vesicle biogenesis, and consistently, AA enhanced the release of tetraspanin-containing exosome-like vesicles. Finally, we identified phospholipase A2 group 2A (PLA2G2A) as the clinically most relevant enzyme producing extracellular AA, providing further potentially theranostic options. Conclusion: Our results suggest that AA contributes to an unfavorable clinical outcome of OC by impacting the phenotype of tumor-associated macrophages. Besides critical AA-regulated signal transduction proteins identified in the present study, PLA2G2A might represent a potential prognostic tool and therapeutic target to interfere with OC progression.


Assuntos
Ácido Araquidônico/farmacologia , Macrófagos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cálcio/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Fosfolipases A2 do Grupo II/metabolismo , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
5.
Clin Epigenetics ; 11(1): 182, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801617

RESUMO

BACKGROUND: Cancer still is one of the leading causes of death and its death toll is predicted to rise further. We identified earlier the potential tumour suppressor zygote arrest 1 (ZAR1) to play a role in lung carcinogenesis through its epigenetic inactivation. RESULTS: We are the first to report that ZAR1 is epigenetically inactivated not only in lung cancer but also across cancer types, and ZAR1 methylation occurs across its complete CpG island. ZAR1 hypermethylation significantly correlates with its expression reduction in cancers. We are also the first to report that ZAR1 methylation and expression reduction are of clinical importance as a prognostic marker for lung cancer and kidney cancer. We further established that the carboxy (C)-terminally present zinc-finger of ZAR1 is relevant for its tumour suppression function and its protein partner binding associated with the mRNA/ribosomal network. Global gene expression profiling supported ZAR1's role in cell cycle arrest and p53 signalling pathway, and we could show that ZAR1 growth suppression was in part p53 dependent. Using the CRISPR-dCas9 tools, we were able to prove that epigenetic editing and reactivation of ZAR1 is possible in cancer cell lines. CONCLUSION: ZAR1 is a novel cancer biomarker for lung and kidney, which is epigenetically silenced in various cancers by DNA hypermethylation. ZAR1 exerts its tumour suppressive function in part through p53 and through its zinc-finger domain. Epigenetic therapy can reactivate the ZAR1 tumour suppressor in cancer.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Neoplasias Renais/diagnóstico , Neoplasias Pulmonares/diagnóstico , Células A549 , Sítios de Ligação , Ciclo Celular , Linhagem Celular Tumoral , Ilhas de CpG , Regulação para Baixo , Detecção Precoce de Câncer , Proteínas do Ovo/química , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HeLa , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Proteína Supressora de Tumor p53/metabolismo , Dedos de Zinco
6.
Proc Natl Acad Sci U S A ; 116(48): 24115-24121, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31704768

RESUMO

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The major AF susceptibility locus 4q25 establishes long-range interactions with the promoter of PITX2, a transcription factor gene with critical functions during cardiac development. While many AF-linked loci have been identified in genome-wide association studies, mechanistic understanding into how genetic variants, including those at the 4q25 locus, increase vulnerability to AF is mostly lacking. Here, we show that loss of pitx2c in zebrafish leads to adult cardiac phenotypes with substantial similarities to pathologies observed in AF patients, including arrhythmia, atrial conduction defects, sarcomere disassembly, and altered cardiac metabolism. These phenotypes are also observed in a subset of pitx2c+/- fish, mimicking the situation in humans. Most notably, the onset of these phenotypes occurs at an early developmental stage. Detailed analyses of pitx2c loss- and gain-of-function embryonic hearts reveal changes in sarcomeric and metabolic gene expression and function that precede the onset of cardiac arrhythmia first observed at larval stages. We further find that antioxidant treatment of pitx2c-/- larvae significantly reduces the incidence and severity of cardiac arrhythmia, suggesting that metabolic dysfunction is an important driver of conduction defects. We propose that these early sarcomere and metabolic defects alter cardiac function and contribute to the electrical instability and structural remodeling observed in adult fish. Overall, these data provide insight into the mechanisms underlying the development and pathophysiology of some cardiac arrhythmias and importantly, increase our understanding of how developmental perturbations can predispose to functional defects in the adult heart.


Assuntos
Arritmias Cardíacas/metabolismo , Proteínas de Homeodomínio/genética , Sarcômeros/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Acetilcisteína/farmacologia , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Doença do Sistema de Condução Cardíaco/etiologia , Doença do Sistema de Condução Cardíaco/genética , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Eletrocardiografia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Larva/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Sarcômeros/genética , Sarcômeros/patologia , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo
7.
J Clin Invest ; 129(7): 2775-2791, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31205027

RESUMO

Hypertension is a primary risk factor for cardiovascular diseases including myocardial infarction and stroke. Major determinants of blood pressure are vasodilatory factors such as nitric oxide (NO) released from the endothelium under the influence of fluid shear stress exerted by the flowing blood. Several endothelial signaling processes mediating fluid shear stress-induced formation and release of vasodilatory factors have been described. It is, however, still poorly understood how fluid shear stress induces these endothelial responses. Here we show that the endothelial mechanosensitive cation channel PIEZO1 mediated fluid shear stress-induced release of adrenomedullin, which in turn activated its Gs-coupled receptor. The subsequent increase in cAMP levels promoted the phosphorylation of endothelial NO synthase (eNOS) at serine 633 through protein kinase A (PKA), leading to the activation of the enzyme. This Gs/PKA-mediated pathway synergized with the AKT-mediated pathways leading to eNOS phosphorylation at serine 1177. Mice with endothelium-specific deficiency of adrenomedullin, the adrenomedullin receptor, or Gαs showed reduced flow-induced eNOS activation and vasodilation and developed hypertension. Our data identify fluid shear stress-induced PIEZO1 activation as a central regulator of endothelial adrenomedullin release and establish the adrenomedullin receptor and subsequent Gs-mediated formation of cAMP as a critical endothelial mechanosignaling pathway regulating basal endothelial NO formation, vascular tone, and blood pressure.


Assuntos
Adrenomedulina/metabolismo , Pressão Sanguínea , Endotélio Vascular , Sistemas do Segundo Mensageiro , Estresse Mecânico , Animais , AMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
8.
PLoS Genet ; 14(11): e1007743, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30457989

RESUMO

Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases.

9.
Sci Rep ; 3: 3277, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24253929

RESUMO

Human cells lacking DNA polymerase η (polη) are sensitive to platinum-based cancer chemotherapeutic agents. Using DNA combing to directly investigate the role of polη in bypass of platinum-induced DNA lesions in vivo, we demonstrate that nascent DNA strands are up to 39% shorter in human cells lacking polη than in cells expressing polη. This provides the first direct evidence that polη modulates replication fork progression in vivo following cisplatin and carboplatin treatment. Severe replication inhibition in individual platinum-treated polη-deficient cells correlates with enhanced phosphorylation of the RPA2 subunit of replication protein A on serines 4 and 8, as determined using EdU labelling and immunofluorescence, consistent with formation of DNA strand breaks at arrested forks in the absence of polη. Polη-mediated bypass of platinum-induced DNA lesions may therefore represent one mechanism by which cancer cells can tolerate platinum-based chemotherapy.


Assuntos
Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Platina/farmacologia , Carboplatina/farmacologia , Carboplatina/toxicidade , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular , Cisplatino/farmacologia , Cisplatino/toxicidade , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , Sinergismo Farmacológico , Expressão Gênica , Humanos , Fosforilação , Platina/toxicidade , Proteína de Replicação A/metabolismo
10.
Bioorg Med Chem ; 18(8): 2930-6, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20347318

RESUMO

A series of new aromatic monoesters of alpha-aminoaralkylphosphonic acids were synthesized by selective hydrolysis of corresponding aromatic diesters of alpha-aminoaralkylphosphonic acids. New potential inhibitors of aminopeptidase N/CD13, an enzyme important in tumour angiogenesis, were developed. Some derivatives of the homophenylalanine and norleucine related monoaryl phosphonates displayed higher inhibition potency than corresponding alpha-aminoaralkylphosphonic acids toward aminopeptidase N/CD13. The effect of one of the new inhibitors on the growth of human PANC-1 and HT-1080 cell lines was examined, either alone or in combination with TNF-alpha.


Assuntos
Inibidores da Angiogênese/química , Antígenos CD13/antagonistas & inibidores , Ácidos Fosfínicos/química , Inibidores de Proteases/química , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/farmacologia , Antígenos CD13/metabolismo , Linhagem Celular Tumoral , Humanos , Ácidos Fosfínicos/síntese química , Ácidos Fosfínicos/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo
11.
Subcell Biochem ; 50: 189-209, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20012583

RESUMO

Genomic DNA is constantly damaged by exposure to exogenous and endogenous agents. Bulky adducts such as UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA present a barrier to DNA synthesis by the major eukaryotic replicative polymerases including DNA polymerase delta. Translesion synthesis (TLS) carried out by specialized DNA polymerases is an evolutionarily conserved mechanism of DNA damage tolerance. The Y family of DNA polymerases, including DNA polymerase eta (Pol eta), the subject of this chapter, play a key role in TLS. Mutations in the human POLH gene encoding Pol eta underlie the genetic disease xeroderma pigmentosum variant (XPV), characterized by sun sensitivity, elevated incidence of skin cancer, and at the cellular level, by delayed replication and hypermutability after UV-irradiation. Pol eta is a low fidelity enzyme when copying undamaged DNA, but can carry out error-free TLS at sites of UV-induced dithymine CPDs. The active site of Pol eta has an open conformation that can accommodate CPDs, as well as cisplatin-induced intrastrand DNA crosslinks. Pol eta is recruited to sites of replication arrest in a tightly regulated process through interaction with PCNA. Pol eta-deficient cells show strong activation of downstream DNA damage responses including ATR signaling, and accumulate strand breaks as a result of replication fork collapse. Thus, Pol eta plays an important role in preventing genome instability after UV- and cisplatin-induced DNA damage. Inhibition of DNA damage tolerance pathways in tumors might also represent an approach to potentiate the effects of DNA damaging agents such as cisplatin.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Humanos
12.
Cell Cycle ; 8(18): 3039-50, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19713747

RESUMO

Translesion synthesis by DNA polymerase eta (poleta) is one mechanism by which cancer cells can tolerate DNA damage by platinum-based anti-cancer drugs. Cells lacking poleta are sensitive to these agents. To help define the consequences of poeta-deficiency, we characterized the effects of equitoxic doses of cisplatin and carboplatin on cell cycle progression and activation of DNA damage response pathways in a human cell line lacking poleta. We show that both cisplatin and carboplatin induce strong S-phase arrest in poleta-deficient XP30RO cells, associated with reduced expression of cyclin E and cyclin B. PIK kinase-mediated phosphorylation of Chk1, H2AX and RPA2 was strongly activated by both cisplatin and carboplatin, but phosphorylation of these proteins was induced earlier by cisplatin than by an equitoxic dose of carboplatin. Compared to Chk1 and H2AX phosphorylation, RPA2 hyperphosphorylation on serine4/serine8 is a late event in response to platinum-induced DNA damage. We directly demonstrate, using dual-labeling flow cytometry, that damage-induced phosphorylation of RPA2 on serine4/serine8 occurs primarily in the S and G(2) phases of the cell cycle, and show that the timing of RPA2 phosphorylation can be modulated by inhibition of the checkpoint kinase Chk1. Furthermore, Chk1 inhibition sensitizes poleta-deficient cells to the cytotoxic effects of carboplatin. Both hyperphosphorylated RPA2 and the homologous recombination protein Rad51 are present in nuclear foci after cisplatin treatment, but these are separable events in individual cells. These results provide insight into the relationship between cell cycle regulation and processing of platinum-induced DNA damage in human cells when poleta-mediated TLS is compromised.


Assuntos
Carboplatina , Ciclo Celular , Cisplatino , Reparo do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/deficiência , Antineoplásicos/farmacologia , Carboplatina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Transformada , Cisplatino/farmacologia , Dano ao DNA , Fibroblastos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA