Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(5): 971-981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478204

RESUMO

PURPOSE: The assessment of vulnerable plaque characteristics and distribution is important to stratify cardiovascular risk in a patient. Computed tomography angiography (CTA) offers a promising alternative to invasive imaging but is limited by the fact that the range of Hounsfield units (HU) in lipid-rich areas overlaps with the HU range in fibrotic tissue and that the HU range of calcified plaques overlaps with the contrast within the contrast-filled lumen. This paper is to investigate whether lipid-rich and calcified plaques can be detected more accurately on cross-sectional CTA images using deep learning methodology. METHODS: Two deep learning (DL) approaches are proposed, a 2.5D Dense U-Net and 2.5D Mask-RCNN, which separately perform the cross-sectional plaque detection in the Cartesian and polar domain. The spread-out view is used to evaluate and show the prediction result of the plaque regions. The accuracy and F1-score are calculated on a lesion level for the DL and conventional plaque detection methods. RESULTS: For the lipid-rich plaques, the median and mean values of the F1-score calculated by the two proposed DL methods on 91 lesions were approximately 6 and 3 times higher than those of the conventional method. For the calcified plaques, the F1-score of the proposed methods was comparable to those of the conventional method. The median F1-score of the Dense U-Net-based method was 3% higher than that of the conventional method. CONCLUSION: The two methods proposed in this paper contribute to finer cross-sectional predictions of lipid-rich and calcified plaques compared to studies focusing only on longitudinal prediction. The angular prediction performance of the proposed methods outperforms the convincing conventional method for lipid-rich plaque and is comparable for calcified plaque.


Assuntos
Angiografia por Tomografia Computadorizada , Aprendizado Profundo , Placa Aterosclerótica , Humanos , Angiografia por Tomografia Computadorizada/métodos , Placa Aterosclerótica/diagnóstico por imagem , Lipídeos/análise , Calcificação Vascular/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico , Masculino
2.
Med Phys ; 46(8): 3329-3343, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111962

RESUMO

PURPOSE: To develop and validate a robust and accurate registration pipeline for automatic contour propagation for online adaptive Intensity-Modulated Proton Therapy (IMPT) of prostate cancer using elastix software and deep learning. METHODS: A three-dimensional (3D) Convolutional Neural Network was trained for automatic bladder segmentation of the computed tomography (CT) scans. The automatic bladder segmentation alongside the computed tomography (CT) scan is jointly optimized to add explicit knowledge about the underlying anatomy to the registration algorithm. We included three datasets from different institutes and CT manufacturers. The first was used for training and testing the ConvNet, where the second and the third were used for evaluation of the proposed pipeline. The system performance was quantified geometrically using the dice similarity coefficient (DSC), the mean surface distance (MSD), and the 95% Hausdorff distance (HD). The propagated contours were validated clinically through generating the associated IMPT plans and compare it with the IMPT plans based on the manual delineations. Propagated contours were considered clinically acceptable if their treatment plans met the dosimetric coverage constraints on the manual contours. RESULTS: The bladder segmentation network achieved a DSC of 88% and 82% on the test datasets. The proposed registration pipeline achieved a MSD of 1.29 ± 0.39, 1.48 ± 1.16, and 1.49 ± 0.44 mm for the prostate, seminal vesicles, and lymph nodes, respectively, on the second dataset and a MSD of 2.31 ± 1.92 and 1.76 ± 1.39 mm for the prostate and seminal vesicles on the third dataset. The automatically propagated contours met the dose coverage constraints in 86%, 91%, and 99% of the cases for the prostate, seminal vesicles, and lymph nodes, respectively. A Conservative Success Rate (CSR) of 80% was obtained, compared to 65% when only using intensity-based registration. CONCLUSION: The proposed registration pipeline obtained highly promising results for generating treatment plans adapted to the daily anatomy. With 80% of the automatically generated treatment plans directly usable without manual correction, a substantial improvement in system robustness was reached compared to a previous approach. The proposed method therefore facilitates more precise proton therapy of prostate cancer, potentially leading to fewer treatment-related adverse side effects.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Terapia com Prótons , Humanos , Masculino , Radiometria , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada
3.
IEEE Trans Vis Comput Graph ; 23(1): 741-750, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875188

RESUMO

Due to the intricate relationship between the pelvic organs and vital structures, such as vessels and nerves, pelvic anatomy is often considered to be complex to comprehend. In oncological pelvic surgery, a trade-off has to be made between complete tumor resection and preserving function by preventing damage to the nerves. Damage to the autonomic nerves causes undesirable post-operative side-effects such as fecal and urinal incontinence, as well as sexual dysfunction in up to 80 percent of the cases. Since these autonomic nerves are not visible in pre-operative MRI scans or during surgery, avoiding nerve damage during such a surgical procedure becomes challenging. In this work, we present visualization methods to represent context, target, and risk structures for surgical planning. We employ distance-based and occlusion management techniques in an atlas-based surgical planning tool for oncological pelvic surgery. Patient-specific pre-operative MRI scans are registered to an atlas model that includes nerve information. Through several interactive linked views, the spatial relationships and distances between the organs, tumor and risk zones are visualized to improve understanding, while avoiding occlusion. In this way, the surgeon can examine surgically relevant structures and plan the procedure before going into the operating theater, thus raising awareness of the autonomic nerve zone regions and potentially reducing post-operative complications. Furthermore, we present the results of a domain expert evaluation with surgical oncologists that demonstrates the advantages of our approach.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias Pélvicas , Pelve , Cirurgia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Gráficos por Computador , Feminino , Humanos , Neoplasias Pélvicas/diagnóstico por imagem , Neoplasias Pélvicas/cirurgia , Pelve/diagnóstico por imagem , Pelve/cirurgia , Complicações Pós-Operatórias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA