Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Oncol ; 18(2): 453-470, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37943164

RESUMO

Lung adenocarcinoma (LUAD) is a molecularly heterogeneous disease. In addition to genomic alterations, cancer transcriptional profiling can be helpful to tailor cancer treatment and to estimate each patient's outcome. Transcriptional activity levels of 50 molecular pathways were inferred in 4573 LUAD patients using Gene Set Variation Analysis (GSVA) method. Seven LUAD subtypes were defined and independently validated based on the combined behavior of the studied pathways: AD (adenocarcinoma subtype) 1-7. AD1, AD4, and AD5 subtypes were associated with better overall survival. AD1 and AD4 subtypes were enriched in epidermal growth factor receptor (EGFR) mutations, whereas AD2 and AD6 showed higher tumor protein p53 (TP53) alteration frequencies. AD2 and AD6 subtypes correlated with higher genome instability, proliferation-related pathway expression, and specific sensitivity to chemotherapy, based on data from LUAD cell lines. LUAD subtypes were able to predict immunotherapy response in addition to CD274 (PD-L1) gene expression and tumor mutational burden (TMB). AD2 and AD4 subtypes were associated with potential resistance and response to immunotherapy, respectively. Thus, analysis of transcriptomic data could improve patient stratification beyond genomics and single biomarkers (i.e., PD-L1 and TMB) and may lay the foundation for more personalized treatment avenues, especially in driver-negative LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Adenocarcinoma de Pulmão/genética , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
3.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444411

RESUMO

We aimed to identify and validate a set of miRNAs that could serve as a prognostic signature useful to determine the recurrence risk for patients with COAD. Small RNAs from tumors of 100 stage II, untreated, MSS colon cancer patients were sequenced for the discovery step. For this purpose, we built an miRNA score using an elastic net Cox regression model based on the disease-free survival status. Patients were grouped into high or low recurrence risk categories based on the median value of the score. We then validated these results in an independent sample of stage II microsatellite stable tumor tissues, with a hazard ratio of 3.24, (CI95% = 1.05-10.0) and a 10-year area under the receiver operating characteristic curve of 0.67. Functional analysis of the miRNAs present in the signature identified key pathways in cancer progression. In conclusion, the proposed signature of 12 miRNAs can contribute to improving the prediction of disease relapse in patients with stage II MSS colorectal cancer, and might be useful in deciding which patients may benefit from adjuvant chemotherapy.

4.
Hepatology ; 78(2): 416-433, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35920301

RESUMO

BACKGROUND AND AIMS: The NADPH oxidase NOX4 plays a tumor-suppressor function in HCC. Silencing NOX4 confers higher proliferative and migratory capacity to HCC cells and increases their in vivo tumorigenic potential in xenografts in mice. NOX4 gene deletions are frequent in HCC, correlating with higher tumor grade and worse recurrence-free and overall survival rates. However, despite the accumulating evidence of a protective regulatory role in HCC, the cellular processes governed by NOX4 are not yet understood. Accordingly, the aim of this work was to better understand the molecular mechanisms regulated by NOX4 in HCC in order to explain its tumor-suppressor action. APPROACH AND RESULTS: Experimental models: cell-based loss or gain of NOX4 function experiments, in vivo hepatocarcinogenesis induced by diethylnitrosamine in Nox4 -deficient mice, and analyses in human HCC samples. Methods include cellular and molecular biology analyses, proteomics, transcriptomics, and metabolomics, as well as histological and immunohistochemical analyses in tissues. Results identified MYC as being negatively regulated by NOX4. MYC mediated mitochondrial dynamics and a transcriptional program leading to increased oxidative metabolism, enhanced use of both glucose and fatty acids, and an overall higher energetic capacity and ATP level. NOX4 deletion induced a redox imbalance that augmented nuclear factor erythroid 2-related factor 2 (Nrf2) activity and was responsible for MYC up-regulation. CONCLUSIONS: Loss of NOX4 in HCC tumor cells induces metabolic reprogramming in a Nrf2/MYC-dependent manner to promote HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , NADPH Oxidases/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Oxirredução , Homeostase , Espécies Reativas de Oxigênio/metabolismo
6.
Sci Data ; 9(1): 595, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182938

RESUMO

Colonomics is a multi-omics dataset that includes 250 samples: 50 samples from healthy colon mucosa donors and 100 paired samples from colon cancer patients (tumor/adjacent). From these samples, Colonomics project includes data from genotyping, DNA methylation, gene expression, whole exome sequencing and micro-RNAs (miRNAs) expression. It also includes data from copy number variation (CNV) from tumoral samples. In addition, clinical data from all these samples is available. The aims of the project were to explore and integrate these datasets to describe colon cancer at molecular level and to compare normal and tumoral tissues. Also, to improve screening by finding biomarkers for the diagnosis and prognosis of colon cancer. This project has its own website including four browsers allowing users to explore Colonomics datasets. Since generated data could be reuse for the scientific community for exploratory or validation purposes, here we describe omics datasets included in the Colonomics project as well as results from multi-omics layers integration.


Assuntos
Neoplasias do Colo , MicroRNAs , Biomarcadores , Neoplasias do Colo/genética , Variações do Número de Cópias de DNA , Humanos , Prognóstico
7.
Cancers (Basel) ; 13(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638221

RESUMO

Recent technological advances and the application of high-throughput mutation and transcriptome analyses have improved our understanding of cancer diseases, including non-small cell lung cancer. For instance, genomic profiling has allowed the identification of mutational events which can be treated with specific agents. However, detection of DNA alterations does not fully recapitulate the complexity of the disease and it does not allow selection of patients that benefit from chemo- or immunotherapy. In this context, transcriptional profiling has emerged as a promising tool for patient stratification and treatment guidance. For instance, transcriptional profiling has proven to be especially useful in the context of acquired resistance to targeted therapies and patients lacking targetable genomic alterations. Moreover, the comprehensive characterization of the expression level of the different pathways and genes involved in tumor progression is likely to better predict clinical benefit from different treatments than single biomarkers such as PD-L1 or tumor mutational burden in the case of immunotherapy. However, intrinsic technical and analytical limitations have hindered the use of these expression signatures in the clinical setting. In this review, we will focus on the data reported on molecular classification of non-small cell lung cancer and discuss the potential of transcriptional profiling as a predictor of survival and as a patient stratification tool to further personalize treatments.

8.
NPJ Breast Cancer ; 7(1): 140, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707097

RESUMO

Reactivation of dormant cancer cells can lead to cancer relapse, metastasis, and patient death. Dormancy is a nonproliferative state and is linked to late relapse and death. No targeted therapy is currently available to eliminate dormant cells, highlighting the need for a deeper understanding and reliable models. Here, we thoroughly characterize the dormant D2.OR and ZR-75-1, and proliferative D2A1 breast cancer cell line models in vivo and/or in vitro, and assess if there is overlap between a dormant and a senescent phenotype. We show that D2.OR but not D2A1 cells become dormant in the liver of an immunocompetent model. In vitro, we show that D2.OR and ZR-75-1 cells in response to a 3D environment or serum-free conditions are growth-arrested in G1, of which a subpopulation resides in a 4NG1 state. The dormancy state is reversible and not associated with a senescence phenotype. This will aid future research on breast cancer dormancy.

9.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33632900

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasia affecting the lung mesothelium. Immune checkpoint inhibitors (ICI) in MPM have not been extremely successful, likely due to poor identification of suitable candidate patients for the therapy. We aimed to identify cellular immune fractions associated with clinical outcome and classify patients with MPM based on their immune contexture. For each defined group, we sought for molecular specificities that could help further define our MPM classification at the genomic and transcriptomic level, as well as identify differential therapeutic strategies based on transcriptional signatures predictive of drug response. METHODS: The abundance of 20 immune cell fractions in 516 MPM samples from 7 gene expression datasets was inferred using gene set variation analysis. Identification of clinically relevant fractions was performed with Cox proportional-hazards models adjusted for age, stage, sex, and tumor histology. Immune-based groups were defined based on the identified fractions. RESULTS: T-helper 2 (TH2) and cytotoxic T (TC) cells were found to be consistently associated with overall survival. Three immune clusters (IG) were subsequently defined based on TH2 and TC immune infiltration levels: IG1 (54.5%) was characterized by high TH2 and low TC levels, IG2 (37%) had either low or high levels of both fractions, and IG3 (8.5%) was defined by low TH2 and high TC levels. IG1 and IG3 groups were associated with worse and better overall survival, respectively. While no differential genomic alterations were identified among immune groups, at the transcriptional level, IG1 samples showed upregulation of proliferation signatures, while IG3 samples presented upregulation of immune and inflammation-related pathways. Finally, the integration of gene expression with functional signatures of drug response showed that IG3 patients might be more likely to respond to ICI. CONCLUSIONS: This study identifies a novel immune-based signature with potential clinical relevance based on TH2 and TC levels, unveiling a fraction of patients with MPM with better prognosis and who might benefit from immune-based therapies. Molecular specificities of the different groups might be used to tailor specific potential therapies in the future.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Mesotelioma Maligno/genética , Linfócitos T Citotóxicos/imunologia , Células Th2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mesotelioma Maligno/imunologia , Mesotelioma Maligno/patologia , Pessoa de Meia-Idade , Análise de Sobrevida , Microambiente Tumoral , Adulto Jovem
10.
Epigenomics ; 12(18): 1593-1610, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32957849

RESUMO

Aim: Gain insight about the role of DNA methylation in the malignant growth of colon cancer. Patients & methods: Methylation and gene expression from 90 adjacent-tumor paired tissues and 48 healthy tissues were analyzed. Tumor genes whose change in expression was explained by changes in methylation were identified using linear models adjusted for tumor stromal content. Results: No differences in methylation were found between adjacent and healthy tissues, but clear differences were found between adjacent and tumor samples. We identified hypermethylated CpG islands located in promoter regions that drive differential gene expression of transcription factors and their target genes. Conclusion: Changes in methylation of a few genes provoke important changes in gene expression, by expanding the signal through transcription activation/repression.


Assuntos
Neoplasias do Colo/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/metabolismo , Ilhas de CpG , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição/metabolismo
11.
J Hepatol ; 72(1): 125-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562907

RESUMO

BACKGROUND & AIMS: Upon ligand binding, tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), are recruited into clathrin-coated pits for internalization by endocytosis, which is relevant for signalling and/or receptor degradation. In liver cells, transforming growth factor-ß (TGF-ß) induces both pro- and anti-apoptotic signals; the latter are mediated by the EGFR pathway. Since EGFR mainly traffics via clathrin-coated vesicles, we aimed to analyse the potential role of clathrin in TGF-ß-induced signalling in liver cells and its relevance in liver cancer. METHODS: Real-Time PCR and immunohistochemistry were used to analyse clathrin heavy-chain expression in human (CLTC) and mice (Cltc) liver tumours. Transient knockdown (siRNA) or overexpression of CLTC were used to analyse its role on TGF-ß and EGFR signalling in vitro. Bioinformatic analysis was used to determine the effect of CLTC and TGFB1 expression on prognosis and overall survival in patients with hepatocellular carcinoma (HCC). RESULTS: Clathrin expression increased during liver tumorigenesis in humans and mice. CLTC knockdown cells responded to TGF-ß phosphorylating SMADs (canonical signalling) but showed impairment in the anti-apoptotic signals (EGFR transactivation). Experiments of loss or gain of function in HCC cells reveal an essential role for clathrin in inhibiting TGF-ß-induced apoptosis and upregulation of its pro-apoptotic target NOX4. Autocrine TGF-ß signalling in invasive HCC cells upregulates CLTC expression, switching its role to pro-tumorigenic. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CONCLUSIONS: This work describes a novel role for clathrin in liver tumorigenesis, favouring non-canonical pro-tumorigenic TGF-ß pathways. CLTC expression in human HCC samples could help select patients that would benefit from TGF-ß-targeted therapy. LAY SUMMARY: Clathrin heavy-chain expression increases during liver tumorigenesis in humans (CLTC) and mice (Cltc), altering the cellular response to TGF-ß in favour of anti-apoptotic/pro-tumorigenic signals. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CLTC expression in HCC human samples could help select patients that would benefit from therapies targeting TGF-ß.


Assuntos
Carcinogênese/genética , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Hepatócitos/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prognóstico , RNA Interferente Pequeno , Transfecção
12.
Br J Cancer ; 119(8): 971-977, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283144

RESUMO

BACKGROUND: Genome-wide association studies on colorectal cancer have identified more than 60 susceptibility loci, but for most of them there is no clear knowledge of functionality or the underlying gene responsible for the risk modification. Expression quantitative trail loci (eQTL) may provide functional information for such single nucleotide polymorphisms (SNPs). METHODS: We have performed detailed eQTL analysis specific for colon tissue on a series of 97 colon tumours, their paired adjacent normal mucosa and 47 colon mucosa samples donated by healthy individuals. R package MatrixEQTL was used to search for genome-wide cis-eQTL and trans-eQTL fitting linear models adjusted for age, gender and tissue type to rank transformed expression data. RESULTS: The cis-eQTL analyses has revealed 29,073 SNP-gene associations with permutation-adjusted P-values < 0.01. These correspond to 363 unique genes. The trans-eQTL analysis identified 10,665 significant SNP-gene associations, most of them in the same chromosome, further than 1 Mb of the gene. We provide a web tool to search for specific SNPs or genes. The tool calculates Pearson or Spearman correlation, and allows to select tissue type for analysis. Data and plots can be exported. CONCLUSIONS: This resource should be useful to prioritise SNPs for further functional studies and to identify relevant genes behind identified loci.


Assuntos
Neoplasias do Colo/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Colo/patologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos
13.
Mol Cancer Ther ; 17(1): 254-263, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054988

RESUMO

Human tumor growth depends on rapidly dividing cancer cells driving population expansion. Even advanced tumors, however, contain slowly proliferating cancer cells for reasons that remain unclear. Here, we selectively disrupt the ability of rapidly proliferating cancer cells to spawn AKT1low daughter cells that are rare, slowly proliferating, tumor-initiating, and chemotherapy-resistant, using ß1-integrin activation and the AKT1-E17K-mutant oncoprotein as experimental tools in vivo Surprisingly, we find that selective depletion of AKT1low slow proliferators actually reduces the growth of a molecularly diverse panel of human cancer cell xenograft models without globally altering cell proliferation or survival in vivo Moreover, we find that unusual cancer patients with AKT1-E17K-mutant solid tumors also fail to produce AKT1low quiescent cancer cells and that this correlates with significantly prolonged survival after adjuvant treatment compared with other patients. These findings support a model whereby human solid tumor growth depends on not only rapidly proliferating cancer cells but also on the continuous production of AKT1low slow proliferators. Mol Cancer Ther; 17(1); 254-63. ©2017 AACR.


Assuntos
Neoplasias/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Transformação Celular Neoplásica , Feminino , Células HCT116 , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Neoplasias/patologia
14.
Breast Cancer Res ; 19(1): 88, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764807

RESUMO

BACKGROUND: Absence of pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) correlates with poor long-term survival in patients with triple negative breast cancer (TNBC). These incomplete treatment responses are likely determined by mechanisms that enable cancer cells to resist being killed. However, the detailed characterization of a drug-resistant cancer cell state in residual TNBC tissue after NACT has remained elusive. AKT1low quiescent cancer cells (QCCs) are a quiescent, epigenetically plastic, and chemotherapy-resistant subpopulation initially identified in experimental cancer models. Here, we asked whether QCCs exist in primary tumors from patients with TNBC and persist after treatment with NACT. METHODS: We obtained pre-treatment biopsy, post-treatment mastectomy, and metastatic specimens from a retrospective cohort of TNBC patients treated with NACT at Massachusetts General Hospital (n = 25). Using quantitative automated immunofluorescence microscopy, QCCs were identified as AKTlow/H3K9me2low/HES1high cancer cells using prespecified immunofluorescence intensity thresholds. QCCs were represented in 2D and 3D digital tumor maps and QCC percentage (QCC-P) and QCC cluster index (QCC-CI) were determined for each sample. RESULTS: We showed that QCCs exist as non-random and heterogeneously distributed clusters within primary breast tumors. In addition, these QCC clusters persist after treatment with multi-agent, multi-cycle, neoadjuvant chemotherapy in both residual primary tumors and nodal and distant metastases in patients with triple negative breast cancer. CONCLUSIONS: These first-in-human data potentially qualify AKT1low quiescent cancer cells as a non-genetic cell state that persists after neoadjuvant chemotherapy in triple negative breast cancer patients and warrants further study.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Terapia Neoadjuvante , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
15.
Br J Cancer ; 117(3): 421-431, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28683472

RESUMO

BACKGROUND: Somatic copy number aberrations (CNAs) are common acquired changes in cancer cells having an important role in the progression of colon cancer (colorectal cancer, CRC). This study aimed to perform a characterisation of CNA and their impact in gene expression. METHODS: Copy number aberrations were inferred from SNP array data in a series of 99 CRC. Copy number aberration events were calculated and used to assess the association between copy number dosage, clinical and molecular characteristics of the tumours, and gene expression changes. All analyses were adjusted for the quantity of stroma in each sample, which was inferred from gene expression data. RESULTS: High heterogeneity among samples was observed; the proportion of altered genome ranged between 0.04 and 26.6%. Recurrent CNA regions with gains were frequent in chromosomes 7p, 8q, 13q, and 20, whereas 8p, 17p, and 18 cumulated losses. A significant positive correlation was observed between the number of somatic mutations and total CNA (Spearman's r=0.42, P=0.006). Approximately 37% of genes located in CNA regions changed their level of expression and the average partial correlation (adjusted for stromal content) with copy number was 0.54 (interquartile range 0.20 to 0.81). Altered genes showed enrichment in pathways relevant for CRC. Tumours classified as CMS2 and CMS4 by the consensus molecular subtyping showed higher frequency of CNA. Losses of one small region in 1p36.33, with gene CDK11B, were associated with poor prognosis. More than 66% of the recurrent CNA were validated in the The Cancer Genome Atlas (TCGA) data when analysed with the same procedure. Furthermore, 79% of the genes with altered expression in our data were validated in the TCGA. CONCLUSIONS: Although CNA are frequent events in microsatellite stable CRC, few focal recurrent regions were found. These aberrations have strong effects on gene expression and contribute to deregulate relevant cancer pathways. Owing to the diploid nature of stromal cells, it is important to consider the purity of tumour samples to accurately calculate CNA events in CRC.


Assuntos
Cromossomos Humanos , Neoplasias do Colo/genética , Dosagem de Genes , Expressão Gênica , Repetições de Microssatélites , Idoso , Colo , Feminino , Humanos , Masculino , Mutação
16.
PLoS One ; 12(4): e0175300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448494

RESUMO

TGF-ß is a cytokine thought to function as a tumor promoter in advanced malignancies. In this setting, TGF-ß increases cancer cell proliferation, survival, and migration, and orchestrates complex, pro-tumorigenic changes in the tumor microenvironment. Here, we find that in melanoma, integrin ß1-mediated TGF-ß activation may also produce tumor suppression via an altered host response. In the A375 human melanoma cell nu/nu xenograft model, we demonstrate that cell surface integrin ß1-activation increases TGF-ß activity, resulting in stromal activation, neo-angiogenesis and, unexpectedly for this nude mouse model, increase in the number of intra-tumoral CD8+ T lymphocytes within the tumor microenvironment. This is associated with attenuation of tumor growth and long-term survival benefit. Correspondingly, in human melanomas, TGF-ß1 correlates with integrin ß1/TGF-ß1 activation and the expression of markers for vasculature and stromal activation. Surprisingly, this integrin ß1/TGF-ß1 transcriptional footprint also correlates with the expression of markers for tumor-infiltrating lymphocytes, multiple immune checkpoints and regulatory pathways, and, importantly, better long-term survival of patients. These correlations are unique to melanoma, in that we do not observe similar associations between ß1 integrin/TGF-ß1 activation and better long-term survival in other human tumor types. These results suggest that activation of TGF-ß1 in melanoma may be associated with the generation of an anti-tumor host response that warrants further study.


Assuntos
Anticorpos/imunologia , Integrina beta1/imunologia , Integrina beta1/metabolismo , Melanoma/imunologia , Melanoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Espaço Extracelular/metabolismo , Feminino , Melanoma/irrigação sanguínea , Melanoma/patologia , Camundongos , Camundongos Nus , Neovascularização Patológica/imunologia , Transdução de Sinais/imunologia , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/imunologia
17.
Cancer Res ; 76(18): 5538-49, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27488530

RESUMO

The degree of heterogeneity among cancer stem cells (CSC) remains ill-defined and may hinder effective anti-CSC therapy. Evaluation of oral cancers for such heterogeneity identified two compartments within the CSC pool. One compartment was detected using a reporter for expression of the H3K4me3 demethylase JARID1B to isolate a JARID1B(high) fraction of cells with stem cell-like function. JARID1B(high) cells expressed oral CSC markers including CD44 and ALDH1 and showed increased PI3K pathway activation. They were distinguished from a fraction in a G0-like cell-cycle state characterized by low reactive oxygen species and suppressed PI3K/AKT signaling. G0-like cells lacked conventional CSC markers but were primed to acquire stem cell-like function by upregulating JARID1B, which directly mediated transition to a state expressing known oral CSC markers. The transition was regulated by PI3K signals acting upstream of JARID1B expression, resulting in PI3K inhibition depleting JARID1B(high) cells but expanding the G0-like subset. These findings define a novel developmental relationship between two cell phenotypes that may jointly contribute to CSC maintenance. Expansion of the G0-like subset during targeted depletion of JARID1B(high) cells implicates it as a candidate therapeutic target within the oral CSC pool. Cancer Res; 76(18); 5538-49. ©2016 AACR.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Separação Celular , Citometria de Fluxo , Neoplasias de Cabeça e Pescoço/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Confocal , Neoplasias Bucais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Reação em Cadeia da Polimerase , Carcinoma de Células Escamosas de Cabeça e Pescoço
18.
Mol Cancer Ther ; 15(1): 142-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26637368

RESUMO

Small molecule inhibitors of AKT (v-akt murine thymoma viral oncogene homolog) signaling are being evaluated in patients with various cancer types, but have so far proven therapeutically disappointing for reasons that remain unclear. Here, we treat cancer cells with subtherapeutic doses of Akti-1/2, an allosteric small molecule AKT inhibitor, in order to experimentally model pharmacologic inhibition of AKT signaling in vitro. We then apply a combined RNA, protein, and metabolite profiling approach to develop an integrated, multiscale, molecular snapshot of this "AKT(low)" cancer cell state. We find that AKT-inhibited cancer cells suppress thousands of mRNA transcripts, and proteins related to the cell cycle, ribosome, and protein translation. Surprisingly, however, these AKT-inhibited cells simultaneously upregulate a host of other proteins and metabolites posttranscriptionally, reflecting activation of their endo-vesiculo-membrane system, secretion of inflammatory proteins, and elaboration of extracellular microvesicles. Importantly, these microvesicles enable rapidly proliferating cancer cells of various types to better withstand different stress conditions, including serum deprivation, hypoxia, or cytotoxic chemotherapy in vitro and xenografting in vivo. These findings suggest a model whereby cancer cells experiencing a partial inhibition of AKT signaling may actually promote the survival of neighbors through non-cell autonomous communication.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Metabolômica , Camundongos , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Cancer Res ; 13(2): 223-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25582703

RESUMO

UNLABELLED: All cancers contain an admixture of rapidly and slowly proliferating cancer cells. This proliferative heterogeneity complicates the diagnosis and treatment of patients with cancer because slow proliferators are hard to eradicate, can be difficult to detect, and may cause disease relapse sometimes years after apparently curative treatment. While clonal selection theory explains the presence and evolution of rapid proliferators within cancer cell populations, the circumstances and molecular details of how slow proliferators are produced is not well understood. Here, a ß1-integrin/FAK/mTORC2/AKT1-associated signaling pathway is discovered that can be triggered for rapidly proliferating cancer cells to undergo asymmetric cell division and produce slowly proliferating AKT1(low) daughter cells. In addition, evidence indicates that the proliferative output of this signaling cascade involves a proteasome-dependent degradation process mediated by the E3 ubiquitin ligase TTC3. These findings reveal that proliferative heterogeneity within cancer cell populations, in part, is produced through a targetable signaling mechanism, with potential implications for understanding cancer progression, dormancy, and therapeutic resistance. IMPLICATIONS: These findings provide a deeper understanding of the proliferative heterogeneity that exists in the tumor environment and highlight the importance of designing future therapies against multiple proliferative contexts. VISUAL OVERVIEW: A proposed mechanism for producing slowly proliferating cancer cells. http://mcr.aacrjournals.org/content/early/2015/01/09/1541-7786.MCR-14-0474/F1.large.jpg.


Assuntos
Divisão Celular Assimétrica , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Evolução Clonal , Heterogeneidade Genética , Células HCT116 , Humanos , Células MCF-7 , Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral
20.
BMC Cancer ; 14: 708, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25253512

RESUMO

BACKGROUND: Dysregulation of transcriptional programs leads to cell malfunctioning and can have an impact in cancer development. Our study aims to characterize global differences between transcriptional regulatory programs of normal and tumor cells of the colon. METHODS: Affymetrix Human Genome U219 expression arrays were used to assess gene expression in 100 samples of colon tumor and their paired adjacent normal mucosa. Transcriptional networks were reconstructed using ARACNe algorithm using 1,000 bootstrap replicates consolidated into a consensus network. Networks were compared regarding topology parameters and identified well-connected clusters. Functional enrichment was performed with SIGORA method. ENCODE ChIP-Seq data curated in the hmChIP database was used for in silico validation of the most prominent transcription factors. RESULTS: The normal network contained 1,177 transcription factors, 5,466 target genes and 61,226 transcriptional interactions. A large loss of transcriptional interactions in the tumor network was observed (11,585; 81% reduction), which also contained fewer transcription factors (621; 47% reduction) and target genes (2,190; 60% reduction) than the normal network. Gene silencing was not a main determinant of this loss of regulatory activity, since the average gene expression was essentially conserved. Also, 91 transcription factors increased their connectivity in the tumor network. These genes revealed a tumor-specific emergent transcriptional regulatory program with significant functional enrichment related to colorectal cancer pathway. In addition, the analysis of clusters again identified subnetworks in the tumors enriched for cancer related pathways (immune response, Wnt signaling, DNA replication, cell adherence, apoptosis, DNA repair, among others). Also multiple metabolism pathways show differential clustering between the tumor and normal network. CONCLUSIONS: These findings will allow a better understanding of the transcriptional regulatory programs altered in colon cancer and could be an invaluable methodology to identify potential hubs with a relevant role in the field of cancer diagnosis, prognosis and therapy.


Assuntos
Colo/metabolismo , Neoplasias do Colo/genética , Regulação da Expressão Gênica , Transcrição Gênica , Transcriptoma , Análise por Conglomerados , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mutação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA