Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 590: 112273, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763427

RESUMO

High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17ß-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17ß-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.


Assuntos
Cálcio , Estradiol , Simulação de Acoplamento Molecular , ATPases Transportadoras de Cálcio da Membrana Plasmática , Animais , Cobaias , Estradiol/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Cálcio/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Masculino , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Contração Muscular/efeitos dos fármacos , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Carbacol/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo
2.
Cells ; 12(23)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067152

RESUMO

The function of the circadian cycle is to determine the natural 24 h biological rhythm, which includes physiological, metabolic, and hormonal changes that occur daily in the body. This cycle is controlled by an internal biological clock that is present in the body's tissues and helps regulate various processes such as sleeping, eating, and others. Interestingly, animal models have provided enough evidence to assume that the alteration in the circadian system leads to the appearance of numerous diseases. Alterations in breathing patterns in lung diseases can modify oxygenation and the circadian cycles; however, the response mechanisms to hypoxia and their relationship with the clock genes are not fully understood. Hypoxia is a condition in which the lack of adequate oxygenation promotes adaptation mechanisms and is related to several genes that regulate the circadian cycles, the latter because hypoxia alters the production of melatonin and brain physiology. Additionally, the lack of oxygen alters the expression of clock genes, leading to an alteration in the regularity and precision of the circadian cycle. In this sense, hypoxia is a hallmark of a wide variety of lung diseases. In the present work, we intended to review the functional repercussions of hypoxia in the presence of asthma, chronic obstructive sleep apnea, lung cancer, idiopathic pulmonary fibrosis, obstructive sleep apnea, influenza, and COVID-19 and its repercussions on the circadian cycles.


Assuntos
Pneumopatias , Apneia Obstrutiva do Sono , Animais , Humanos , Ritmo Circadiano/genética , Hipóxia , Relógios Biológicos/fisiologia
3.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895016

RESUMO

It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.


Assuntos
Asma , Fitoestrógenos , Feminino , Humanos , Fitoestrógenos/uso terapêutico , Terapia de Reposição de Estrogênios , Terapia de Reposição Hormonal , Menopausa/fisiologia , Estrogênios/uso terapêutico , Asma/tratamento farmacológico
4.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175587

RESUMO

To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.


Assuntos
Cálcio , Miócitos de Músculo Liso , Cálcio/metabolismo , Miócitos de Músculo Liso/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Canais Iônicos/metabolismo , Estrogênios/metabolismo
5.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230900

RESUMO

Hypoxia and hypoxia-inducible factors (HIFs) are essential in regulating several cellular processes, such as survival, differentiation, and the cell cycle; this adaptation is orchestrated in a complex way. In this review, we focused on the impact of hypoxia in the physiopathology of idiopathic pulmonary fibrosis (IPF) related to lung development, regeneration, and repair. There is robust evidence that the responses of HIF-1α and -2α differ; HIF-1α participates mainly in the acute phase of the response to hypoxia, and HIF-2α in the chronic phase. The analysis of their structure and of different studies showed a high specificity according to the tissue and the process involved. We propose that hypoxia-inducible transcription factor 2a (HIF-2α) is part of the persistent aberrant regeneration associated with developing IPF.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fibrose Pulmonar Idiopática , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Hipóxia Celular , Humanos , Hipóxia
6.
Salud ment ; 45(5): 261-272, Sep.-Oct. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1432201

RESUMO

Abstract Background Since schizophrenia is a multifactorial mental illness, a basic understanding of its etiological components improves its understanding, diagnosis, and the selection of therapeutic targets. Objective To identify the prodromes and biological markers in schizophrenic or ultra-high risk (UHR) patients and elucidate their specificity. Method Narrative review of relevant sources in English and Spanish in the Medline-PubMed database on minor physical abnormalities, cognitive abnormalities, neuroanatomical, and synaptic and cell changes present in schizophrenic patients and/or subjects with a high risk of developing schizophrenia Results Patients with SZ and, to a lesser extent, UHR subjects present phenotypic and behavioral manifestations that correlate with underlying cell processes. The study of the latter makes it possible to characterize diagnostic biomarkers. At present, its clinical application is limited by factors such as poorly understood pathophysiology, lack of study models, homology with other psychiatric disorders, and the dearth of clinical trials conducted. Discussion and conclusion Schizophrenia is the final manifestation of damage to prenatal and post-natal neurodevelopment and is reflected during the prodromal stage in early biological markers with clinical relevance. It is necessary to establish new study models that will increase knowledge to offer specific biomarkers for use in early clinical diagnosis.


Resumen Antecedentes La esquizofrenia es una enfermedad mental multifactorial. Una comprensión básica de sus componentes etiológicos mejora su entendimiento, su diagnóstico y la selección de posibles blancos terapéuticos. Objetivo Reportar los pródromos e indicadores biológicos en pacientes esquizofrénicos o de ultra-alto riesgo (UHR) y dilucidar su especificidad. Método Revisión narrativa de fuentes relevantes en inglés y español en la base de datos Medline-PubMed sobre las anomalías física menores, anomalías cognitivas, cambios neuroanatómicos, sinápticos y celulares presentes en pacientes esquizofrénicos y/o en sujetos de UHR. Resultados Los pacientes con EZ y, de manera menos predominante, los sujetos de UHR presentan manifestaciones fenotípicas y conductuales que se correlacionan con los procesos celulares subyacentes. El estudio de éstos permite caracterizar diferentes biomarcadores diagnósticos. En la actualidad, su aplicación en la clínica es limitada por distintos factores como son la fisiopatología poco comprendida, la falta de modelos de estudio, la homología con otros trastornos psiquiátricos y los escasos ensayos clínicos realizados. Discusión y conclusión La esquizofrenia es la manifestación final de daños en el neurodesarrollo prenatal y post-natal, y se refleja durante la etapa prodrómica en indicadores biológicos tempranos con relevancia clínica. Se requiere establecer nuevos modelos de estudio que permitan ampliar el conocimiento para ofrecer biomarcadores específicos para ser usados en el diagnóstico clínico temprano.

7.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067243

RESUMO

The COVID-19 pandemic has established an unparalleled necessity to rapidly find effective treatments for the illness; unfortunately, no specific treatment has been found yet. As this is a new emerging chaotic situation, already existing drugs have been suggested to ameliorate the infection of SARS-CoV-2. The consumption of caffeine has been suggested primarily because it improves exercise performance, reduces fatigue, and increases wakefulness and awareness. Caffeine has been proven to be an effective anti-inflammatory and immunomodulator. In airway smooth muscle, it has bronchodilator effects mainly due to its activity as a phosphodiesterase inhibitor and adenosine receptor antagonist. In addition, a recent published document has suggested the potential antiviral activity of this drug using in silico molecular dynamics and molecular docking; in this regard, caffeine might block the viral entrance into host cells by inhibiting the formation of a receptor-binding domain and the angiotensin-converting enzyme complex and, additionally, might reduce viral replication by the inhibition of the activity of 3-chymotrypsin-like proteases. Here, we discuss how caffeine through certain mechanisms of action could be beneficial in SARS-CoV-2. Nevertheless, further studies are required for validation through in vitro and in vivo models.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , COVID-19/dietoterapia , Cafeína/farmacologia , Reposicionamento de Medicamentos/métodos , Músculo Liso/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/fisiopatologia , Humanos , Fatores Imunológicos/farmacologia , Simulação de Dinâmica Molecular , Músculo Liso/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo
8.
Oxid Med Cell Longev ; 2020: 3176375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149807

RESUMO

A hypoxic microenvironment is a hallmark in different types of tumors; this phenomenon participates in a metabolic alteration that confers resistance to treatments. Because of this, it was proposed that a combination of 2-methoxyestradiol (2-ME) and sodium dichloroacetate (DCA) could reduce this alteration, preventing proliferation through the reactivation of aerobic metabolism in lung adenocarcinoma cell line (A549). A549 cells were cultured in a hypoxic chamber at 1% O2 for 72 hours to determine the effect of this combination on growth, migration, and expression of hypoxia-inducible factors (HIFs) by immunofluorescence. The effect in the metabolism was evaluated by the determination of glucose/glutamine consumption and the lactate/glutamate production. The treatment of 2-ME (10 µM) in combination with DCA (40 mM) under hypoxic conditions showed an inhibitory effect on growth and migration. Notably, this reduction could be attributed to 2-ME, while DCA had a predominant effect on metabolic activity. Moreover, this combination decreases the signaling of HIF-3α and partially HIF-1α but not HIF-2α. The results of this study highlight the antitumor activity of the combination of 2-ME 10 µl/DCA 40 mM, even in hypoxic conditions.


Assuntos
2-Metoxiestradiol/uso terapêutico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácido Dicloroacético/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Hipóxia Tumoral , Microambiente Tumoral , 2-Metoxiestradiol/farmacologia , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Dicloroacético/farmacologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
9.
Respir Res ; 20(1): 130, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234835

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an age-related, progressive and lethal disease, whose pathogenesis is associated with fibroblasts/myofibroblasts foci that produce excessive extracellular matrix accumulation in lung parenchyma. Hypoxia has been described as a determinant factor in its development and progression. However, the role of distinct members of this pathway is not completely described. METHODS: By western blot, quantitative PCR, Immunohistochemistry and Immunocitochemistry were evaluated, the expression HIF alpha subunit isoforms 1, 2 & 3 as well, as their role in myofibroblast differentiation in lung tissue and fibroblast cell lines derived from IPF patients. RESULTS: Hypoxia signaling pathway was found very active in lungs and fibroblasts from IPF patients, as demonstrated by the abundance of alpha subunits 1 and 2, which further correlated with the increased expression of myofibroblast marker αSMA. In contrast, HIF-3α showed reduced expression associated with its promoter hypermethylation. CONCLUSIONS: This study lends further support to the involvement of hypoxia in the pathogenesis of IPF, and poses HIF-3α expression as a potential negative regulator of these phenomena.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Fibrose Pulmonar Idiopática/metabolismo , Miofibroblastos/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Miofibroblastos/patologia , Proteínas Repressoras/genética
10.
Mediators Inflamm ; 2016: 5972302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445440

RESUMO

Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca(2+) channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Butadienos/farmacologia , Células Cultivadas , Cicloeximida/farmacologia , Dactinomicina/farmacologia , Cobaias , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Nitrilas/farmacologia , Peptídeos Cíclicos/farmacologia , Traqueia/citologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
Steroids ; 101: 64-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26066899

RESUMO

Therapy with estrogens is frequently used in menopausal women and as hormonal contraception. Because of its thrombotic effects, long term estrogen administration used in hormonal replacement therapy (HRT) and contraception could represent a health hazard. In this regard, 17ß-aminoestrogens such as aminoestrol, butolame and pentolame have shown promising HRT potential, because they have a weak agonist estrogenic action and antithrombotic activity. Additionally, estrogens play a protective role in airway smooth muscle, but the effect of 17ß-aminoestrogens on the airway smooth muscle has not been tested yet. In guinea pig tracheal smooth muscle pentolame and butolame induced hyperresponsiveness to histamine (His), carbachol (Cch) and KCl. Interestingly, aminoestrol did not show this effect at the highest concentration studied, it even lowered the contraction induced by Cch. The hyperresponsiveness induced by pentolame to His was abolished by nifedipine. In single tracheal myocytes, KCl induced an increment in the intracellular Ca(2+) concentration [Ca(2+)]i, pentolame also showed an increase in [Ca(2+)]i and the addition of KCl in the plateau of this rise further significantly augmented the [Ca(2+)]i response. Additionally, in patch clamp experiments pentolame increased the L-type Ca(2+) currents. Thus, 17ß-aminoestrogens such as pentolame and butolame, but not aminoestrol, activate L-type Ca(2+) channel to induced hyperresponsiveness to Cch, His and KCl in guinea pig tracheal smooth muscle. Due to its lack of effect on airways and to its anticoagulant characteristics, aminoestrol seems to be the best alternative in the HRT among the 17ß-aminoestrogens studied.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Estrogênios/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Traqueia/efeitos dos fármacos , Animais , Carbacol/farmacologia , Cobaias , Histamina/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/fisiologia , Cloreto de Potássio/farmacologia
12.
Chronobiol Int ; 32(2): 164-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25245012

RESUMO

The light-dark cycle is an environmental factor that influences immune physiology, and so, variations of the photoperiod length result in altered immune responsivity. Macrophage physiology comprises a spectrum of functions that goes from host defense to immune down-regulation, in addition to their homeostatic activities. Macrophages also play a key role in the transition from innate to adaptive immune responses. Met-enkephalin (MEnk) has been recognized as a modulator of macrophage physiology acting in an autocrine or paracrine fashion to influence macrophage activation, phenotype polarization and production of cytokines that would enhance lymphocyte activation at early stages of an immune response. Previously it was shown that splenic MEnk tissue content is reduced in rats exposed to constant light. In this work, we explored whether production of Met-enkephalin-containing peptides (MECPs) in cultured splenic macrophages is affected by exposure of rats to a constant light regime. In addition, we explored whether primary immune response was impaired under this condition. We found that in rats, 15 days in constant light was sufficient to disrupt their general activity rhythm. Splenic MEnk content oscillations and levels were also blunted throughout a 24-h period in animals subjected to constant light. In agreement, de novo synthesis of MECPs evaluated through incorporation of (35)S-methionine was reduced in splenic macrophages from rats exposed to constant light. Moreover, MECPs immunocytochemistry showed a decrease in the intracellular content and lack of granule-like deposits in this condition. Furthermore, we found that primary T-dependent antibody response was compromised in rats exposed to constant light. In those animals, pharmacologic treatment with MEnk increased IFN-γ-secreting cells. Also, IL-2 secretion from antigen-stimulated splenocytes was reduced after incubation with naloxone, suggesting that immune-derived opioid peptides and stimulation of opioid receptors are involved in this process. Thus, the immune impairment observed from early stages of the response in constant light-subjected rats, could be associated with reduced production of macrophage-derived enkephalins, leading to a sub-optimal interaction between macrophages and lymphocytes in the spleen and the subsequent deficiency in antibody production.


Assuntos
Encefalina Metionina/biossíntese , Luz , Macrófagos/imunologia , Animais , Ritmo Circadiano/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo , Encefalinas/biossíntese , Imunoglobulina M/metabolismo , Imuno-Histoquímica , Interleucina-2/metabolismo , Macrófagos/citologia , Macrófagos/efeitos da radiação , Masculino , Melatonina/sangue , Naloxona/farmacologia , Fenótipo , Fotoperíodo , Precursores de Proteínas/biossíntese , Ratos , Ratos Wistar , Baço/citologia
13.
Salud ment ; 36(3): 193-199, may.-jun. 2013.
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-689664

RESUMO

Dementias are progressive and neurodegenerative neuropsychiatry disorders, with a high worldwide prevalence. These disorders affect memory and behavior, causing impairment in the performance of daily activities and general disability in the elders. Cognitive impairment in these patients is related to anatomical and structural alterations at cellular and sub-cellular levels in the Central Nervous System. In particular, amyloid plaques and neurofibrillar tangles have been defined as histopathological hallmarks of Alzheimer's disease. Likewise, oxidative stress and neuroinflammation are implicated in the etiology and progression of the disease. Neuronal precursors from human olfactory neuroepithelium have been recently characterized as an experimental model to identify neuropsychiatric disease biomarkers. Moreover, this model not only allows the study of neuropsychiatric physiopathology, but also the process of neurodevelopment at cellular, molecular and pharmacological levels. This review gathers the evidence to support the potential therapeutic use of melatonin for dementias, based on its antioxidant properties, its anti-inflammatory effect in the brain, and its ability to inhibit both tau hyper-phosphorylation and amyloid plaque formation. Furthermore, since melatonin stimulates neurogenesis, and promotes neuronal differentiation by inducing the early stages of neuritogenesis and dendrite formation, it has been suggested that melatonin could be useful to counteract the cognitive impairment in dementia patients.


Las demencias son enfermedades neuropsiquiátricas, progresivas, neurodegenerativas y con una alta prevalencia a nivel mundial. Ocupan uno de los primeros lugares como enfermedades que causan incapacidad en los adultos mayores. En estos pacientes el Sistema Nervioso Central presenta alteraciones anatómico-estructurales a nivel celular y subcelular que se asocian con deficiencias cognitivas. En particular, en la enfermedad de Alzheimer se han caracterizado marcadores histopatológicos como las placas amiloides y las marañas neurofibrilares. Se sabe que el estrés oxidativo y la neuroinflamación participan en la etiología y el desarrollo de la enfermedad. Recientemente se caracterizó a los precursores neuronales del neuroepitelio olfatorio humano como un modelo experimental adecuado para identificar biomarcadores de rasgo y para estudiar la fisiopatología de diversas enfermedades neuropsiquiátricas, así como el proceso del neurodesarrollo, a nivel celular, molecular y farmacológico. En este trabajo se presenta la evidencia que sustenta que la melatonina puede ser útil en el tratamiento de las demencias, por su capacidad antioxidante, por su efecto anti-inflamatorio, así como por el efecto inhibidor de la hiperfosforilación de la proteina tau y de la formación de placas amiloides. Además, al estimular la formación de nuevas neuronas, la neuritogénesis en sus etapas tempranas y la formación de dendritas, la melatonina podría contribuir a contrarrestar la pérdida de las funciones cognitivas que se observa en estos padecimientos.

14.
Salud ment ; 35(3): 241-246, may.-jun. 2012. ilus
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-667922

RESUMO

Schizophrenia is a mental disorder characterized by delusions, hallucinations, disorganization in speech and thinking as well as alterations in social behavior, and affective flattening. Schizophrenic patients also have an olfactory deficit since prodromal stages of this disorder. The olfactory deficit could be present in schizophrenic patients due to anatomic and structural alteration of the Central Nervous System, or peripheral abnormalities in the olfactory epithelium. The major alterations of the Central Nervous System are diminished volumes of olfactory bulb and structures of primary olfactory cortex, hippocampus and amygdala. While, olfactory epithelium has functional abnormalities in cellular differentiation and electric response of sensory olfactory neurons, which suggest an impairment of the odor transduction. The cellular culture of olfactory epithelium has allowed isolating multipotential progenitor cells that have the ability to proliferate and differentiate in mature neurons and glia. This model could provide evidences on the causes that could explain the olfactory deficits in schizophrenia. Moreover, it will allow testing hypothesis on pathophysiological causes of this mental disorder in different of stages of the neurodevelopment. In addition, olfactory epithelial neuronal precursors constitute a novel model to detect genetic, proteomic and functional biomarkers that allow a biological diagnosis.


La esquizofrenia (EZ) es un trastorno psiquiátrico que se caracteriza por la presencia de delirios, alucinaciones, pensamiento desorganizado, lenguaje desestructurado, alteraciones del comportamiento social y aplanamiento afectivo, entre otros síntomas. Los pacientes con EZ también presentan un déficit en la capacidad olfatoria desde la fase prodrómica del trastorno. El déficit olfatorio en la EZ puede presentarse por alteraciones anatómico-estructurales del SNC o por anomalías a nivel periférico en el epitelio olfatorio. Las alteraciones principales del SNC son la disminución del volumen de los bulbos olfatorios, de estructuras de la corteza olfatoria primaria, del hipocampo y de la amígdala coronal. El epitelio olfatorio en los estadios tempranos de la EZ presenta anomalías funcionales en la diferenciación y en la respuesta biofísica de las neuronas sensoriales olfatorias, lo que sugiere que existe un desacoplamiento de la transducción olfatoria. El cultivo celular del epitelio olfatorio ha permitido aislar células progenitoras multipotenciales que poseen la capacidad de proliferar y diferenciarse en neuronas y glía. El estudio de este modelo podría aportar evidencia sobre las causas que explicarían el déficit olfatorio en la esquizofrenia y permitiría estudiar hipótesis que intenten explicar las causas de la fisiopatología de este trastorno en el neurodesarrollo así como detectar biomarcadores genéticos, proteómicos o funcionales que permitan un diagnóstico biológico.

15.
Artigo em Inglês | MEDLINE | ID: mdl-22252127

RESUMO

In crayfish, one very well-studied circadian rhythm is that of electroretinogram (ERG) amplitude. The cerebroid ganglion has been considered a plausible site for the circadian pacemaker of this rhythm and for the retinular photoreceptors, as the corresponding effectors. The pigment dispersing hormone (PDH) appears to synchronize ERG rhythm, but its characterization as a synchronizer cue remains incomplete. The main purposes of this work were a) to determine whether PDH acts on the cerebroid ganglion, and b) to complete its characterization as a non-photic synchronizer. Here we show that PDH increases the number of the spontaneous potentials of the cerebroid ganglion, reaching 149.92±6.42% of the activity recorded in the controls, and that daily application of PDH for 15 consecutive days adjusts the ERG circadian rhythm period to 24.0±0.2h and the end of the activity period of the rhythm coincides with the injection of the hormone. In this work, we hypothesized that in crayfish, PDH transmits the "day" signal to the ERG circadian system and acts upon both the presumptive circadian pacemaker and the corresponding effectors to reinforce the synchronization of the system.


Assuntos
Proteínas de Artrópodes/metabolismo , Astacoidea/metabolismo , Relógios Biológicos , Ritmo Circadiano , Eletrorretinografia , Gânglios dos Invertebrados/metabolismo , Peptídeos/metabolismo , Animais , Feminino , Masculino , Potenciais da Membrana , Estimulação Luminosa , Fatores de Tempo
16.
Salud ment ; 34(2): 167-173, mar.-abr. 2011. ilus
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-632792

RESUMO

Circadian rhythms are oscillations of physiological functions. The period of their oscillation is about 24 h, and can be synchronized by environmental periodic signals as night-day cycle. The endogenous periodical changes depend on various structural elements of the circadian system which consists of the effectors, the secondary oscillators, the synchronizers and the circadian pacemaker. In mammalian species, the physiological function better understood respect their oscillation pattern are the synthesis and release of several hormones (i.e. cortisol and melatonin), the body temperature, the sleep-awake cycle, the locomotive activity, cell proliferation, neuronal activity among other rhythms. The Suprachiasmatic nucleus is the main circadian pacemarker in mammals; its oscillation keeps the circadian system synchronized particularly with respect to the environment photo period. When light reaches the pigment melanopsin in ganglionar neurons in the retina, the photoperiod signal is sent to Suprachiasmatic nucleus, and its postsinaptic neurons distributes the temporal signal to pheripheral oscillators by nervous or humoral pathways. Among the oscillators, the pineal gland is a peripheral one modulated by Suprachiasmatic nucleus. At night, the indolamine melatonin is synthesized and released from pinealocytes, and reaches other peripheral oscillators. Melatonin interacts with membrane receptors on Suprachiasmatic nucleus pacemarker neurons, reinforcing the signal of the photoperiod. In mammals, exogenous melatonin synchronizes several circadian rhythms including locomotive activity and melatonin release. When this indolamine is applied directly into the Suprachiasmatic nucleus, it produces a phase advance of the endogenous melatonin peak and increases the amplitude of the oscillation. In humans, melatonin effect on the circadian system is evident because it changes the circadian rhythms phase in subjects with advanced sleep-phase syndrome, night workers or blind people. Also it reduces jet lag symptoms enhancing sleep quality and reseting the circadian system to local time. Melatonin effects on circadian rhythms indicate their role as a chronobiotic, since decreased daily melatonin levels that occur with age and in neuropsychiatric disorders are associated with disturbances in the sleep-awake cycle. In particular, it has been described that Alzheimer's disease patients have disturbed sleep-awake cycle and have decreased serum melatonin levels. Sleep disorders in Alzheimer's disease patients decrease when they are treated with melatonin. Moreover, sleep disturbances have been observed in bipolar disorder patients and often precede relapses of insomnia-associated mania and hypersomnia-associated depression. These disturbances are linked to delayed- and advanced- phases of circadian rhythms or arrhythmia; therefore, it has been suggested that bipolar disorder patients could be treated with light and dark therapy. In depressed patients, the levels of melatonin are low throughout the 24 hour period and have a delayed onset of the indolamine concentration and showed an advance of its peak. Schizophrenic patients have decreased levels in the plasmatic melatonin in both phases of the light-dark cycle. Melatonin administration to these patients increases their sleep efficiency. In addition, melatonin acts as a neuroprotector because of its potent antioxidant action and through its cytoskeletal modulation properties. In neurodegenerative animal models, its protector effect has been observed using okadaic acid. This neurotoxin is employed for reproducing cytoskeletal damage in neurons and increased oxidative stress levels, which are molecular events similar to those that occur in Alzheimer's disease. In N1E-115 cell cultures incubated with okadaic acid, the administration of melatonin diminishes hyperphosphorylated tau and oxidative stress levels, and prevents the neurocytoskeletal damage caused by the neurotoxin. Although it is known that melatonin plays a key role in the circadian rhythms entrainment, little is known about its synchronizing effects at molecular and structural level. In algae, it has been observed a link between morphological changes and the light-dark cycle and it is known that shape is determinated by the cytoskeletal structure. In particular, the alga Euglena gracilis changes its shape two times per day under the effect of a daily light-dark cycle. This alga has a long shape when there is a higher photosynthetic capacity at the half period of the day; on the contrary, it showed a rounded shape at the end of 24 h cycle. Also, the influence of the cell shape changes on the photosynthetic reactions was investigated by altering them with drugs that disrupt the cytoskeletal structure as cytochalasin B and colchicine. Both inhibitors blocked the rhythmic shape changes and the photo-synthetic rhythm. Moreover, there are some reports about cytoskeletal changes in plants targeted by circadian rhythms. Guarda cells of Vicia faba L. showed a diurnal cycle on the alpha and beta tubulin levels. In addition, it has been proposed that melatonin synchronizes different body rhythms through cytoskeletal rearrangements. In culture cells, nanomolar melatonin concentrations cause an increase in both the polimerization rate and microtubule formation through calmodulin antagonism. A cyclic pattern produced by melatonin in the actin microfilament organization has been demonstrated in canine kidney cells. Cyclic incubation of MDCK cells with nanomolar concentrations of melatonin, resembling the cyclic pattern of secretion and release to plasma produces a microfilament reorganization and the formation of domes. Studies in animals are controvertial regarding if the amount of microtubules in different tissues varies cyclically. In rats and baboons, melatonin administration or exposure of rats to darkness induced an increased number of microtubules in the pineal gland. However, in the hypothalamus, the exposure of rats to light resulted in an increase in the microtubular protein content. Similarly, (X-tubulin mRNA was augmented during the light phase in the hypothalamus, hippocampus and cortex. By contrast, in rats maintained in constant darkness, a decreased level in the tubulin content was observed in the visual cortex. Additional information on cycle variations observed in cytoskeletal molecules indicated that beta actin mRNA levels are lower during the day in the hippocampus and cortex. But no change was observed in actin protein levels in the cerebral cortex. However, increased levels of actin and its mRNA were observed in the hypothalamus. Exogenous melatonin administration at onset of night decreased the amount of actin in the hypothalamus, while the actin mRNA levels decreased when the administration was realized in the morning. In this review we will describe the synchronizer role of melatonin in the sleep-awake cycle and in the organization of cytoskeletal proteins and their mRNAs. Also, we will describe alterations in the melatonin secretion rhythm associated with a neuronal cytoskeleton disorganization in the neuropsychiatric diseases such as Alzheimer, depression, bipolar disorder and schizophrenia.


Los ritmos circadianos son patrones de oscilación con un periodo cercano a 24h que se observan en los procesos fisiológicos. En los mamíferos se han descrito funciones biológicas con regulación circádica tal como el ciclo sueño-vigilia. La administración de la melatonina, una indolamina secretada por la glándula pineal, sincroniza los ritmos circadianos. En los humanos, este efecto se ha estudiado en sujetos con síndrome de <

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA