RESUMO
Olive leaf is a byproduct of the olive tree that is rich in phenolic compounds with potential anticarcinogenic effects against various cancers, including breast cancer. Nevertheless, the ingestion or topical application of such plant extracts faces certain limitations. These limitations can be addressed by encapsulating the extracts in nanovesicles to enhance their release and bioavailability. This study aims to develop nanovesicles using Olea europaea leaf extract to exploit its potential anti-cancer properties. Soy lecithin was used to form liposomes for encapsulation of the olive leaf extract. In addition, ethanol and glycerol were added to form ethosomes and glycerosomes, respectively. The antiproliferative effect of both the free extract and the three formed nanovesicles was tested in MCF7 and MCF10A cell lines. To comprehend the mechanisms leading to reduced cell viability after exposure to olive leaf extract and its nanovesicles, levels of reactive oxygen species (ROS), mitochondrial membrane potential, and apoptotic stage were evaluated. The results suggest that both, the nanovesicles and the free extract, are antiproliferative agents against MCF7 tumour cells. However, when examining the impact of olive leaf extract and the formulated nanovesicles on MCF10A cells, no reduction in cell viability was observed. Our findings indicate that the anti-tumour effect of the extract and its nanovesicles may be due to increased oxidative stress, mediated by mitochondrial damage. The mechanism through which olive leaf extract exerts its antiproliferative effect on the breast cancer tumour line implies that apoptosis may be induced by the extract via the involvement of a mitochondria-dependent ROS-mediated pathway.
RESUMO
Targeting phospholipid biosynthesis, specifically phosphatidylcholine (PC), which is enhanced in tumor cells, has been proven a suitable antitumor strategy. In fact, the overexpression of the choline kinase α1 (ChoKα1) isoform has been found in malignant cells and tumors, thus becoming an excellent antitumor target. ChoKα1 inhibitors are being synthesized at the present that show a large inhibitory activity. Two of them have been chosen in this study as representatives of different structural families: a biscationic biphenyl derivative of thieno[3,2-d]pyrimidinium substituted with a cyclic amine (here referred to as Fa22) and a biscationic biphenyl thioethano derivative of 7-chloro-quinolinium substituted with a pyrrolidinic moiety (here referred to as PL48). However, the potential use of these types of compounds in systemic treatments is hampered because of their low specificity. In fact, to enter the cell and reach their target, these inhibitors use choline transporters and inhibit choline uptake, being that one of the causes of their toxicity. One way to solve this problem could be allowing their entrance into the cells by alternative ways. With this goal, MamC-mediated magnetic nanoparticles (BMNPs), already proven effective drug nanocarriers, have been used to immobilize Fa22 and PL48. The idea is to let BMNPs enter the cell (they enter the cell by endocytosis) carrying these molecules, and, therefore, offering another way in for these compounds. In the present study, we demonstrate that the coupling of Fa22 and PL48 to BMNPs allows these molecules to enter the tumoral cell without completely inhibiting choline uptake, so, therefore, the use of Fa22 and PL48 in these nanoformulations reduces the toxicity compared to that of the soluble drugs. Moreover, the nanoassemblies Fa22-BMNPs and PL48-BMNPs allow the combination of chemotherapy and local hyperthermia therapies for a enhanced cytotoxic effect on the tumoral HepG2 cell line. The consistency of the results, independently of the drug structure, may indicate that this behavior could be extended to other ChoKα1 inhibitors, opening up a possibility for their potential use in clinics.
Assuntos
Colina Quinase , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/síntese química , Proliferação de Células/efeitos dos fármacos , Colina Quinase/antagonistas & inibidores , Colina Quinase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Nanopartículas de Magnetita/química , Estrutura Molecular , Relação Estrutura-Atividade , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologiaRESUMO
Alkylphospholipids (APLs) have been studied as anticancer drugs that interfere with biological membranes without targeting DNA. Although their mechanism of action is not fully elucidated yet, it is known that they disrupt the intracellular trafficking of cholesterol and its metabolism. Here, we analyzed whether APLs could also interfere with mitochondrial function. For this purpose, we used HT29 colorectal cancer cells, derived from a primary tumor, and SW620 colorectal cancer cells, derived from a metastasis site. After treatment with the APLs miltefosine and perifosine, we analyzed various mitochondrial parameters, including mitochondrial mass, cardiolipin content, mitochondrial membrane potential, H2O2 production, the levels of oxidative phosphorylation (OXPHOS) complexes, metabolic enzymes activity, the oxygen consumption rate, and the levels of apoptosis and autophagy markers. APLs, especially perifosine, increased mitochondrial mass while OXPHOS complexes levels were decreased without affecting the total oxygen consumption rate. Additionally, we observed an increase in pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH) levels and a decrease in lactate dehydrogenase (LDH) activity, suggesting a metabolic rewiring induced by perifosine. These alterations led to higher mitochondrial membrane potential, which was potentiated by decreased uncoupling protein 2 (UCP2) levels and increased reactive oxygen species (ROS) production. Consequently, perifosine induced an imbalance in mitochondrial function, resulting in higher ROS production that ultimately impacted cellular viability.
RESUMO
Introduction: Several metabolite classes have been identified in human endometrium, including lipids, nucleotides, amino acids, organic acids, and sugars. The first studies suggest the importance of metabolites in endometrial functions, as imbalance in uterine metabolites has been associated with low implantation rate and endometriosis. Nevertheless, most of studies have put emphasis on specific metabolite classes, and we lack the knowledge of the whole metabolome composition in human uterus. Further, a healthy dietary pattern has been shown to potentially protect against different endometrial dysfunctions and is a potential modulator of metabolomic composition and, consequently, the intrauterine microenvironment. The Mediterranean Diet (MD), characterized by a high intake of fruits, vegetables, cereals, nuts, legumes, fish, and olive oil, and a low consumption of meat, dairy products, and processed foods, has been associated with a wide range of benefits for health. Indeed, the MD pattern has displayed a beneficial role in endometriosis management and fertility; however, the relationship between the MD and the endometrial metabolome is still unknown. In our study, we set out to analyze receptive-phase endometrial metabolome profiles among women with infertility and their associations with MD. Methods: The study included women with male factor infertility (n=8), unexplained infertility (n=10), recurrent implantation failure (n=14), and endometriosis (n=13). The endometrial metabolome was analyzed with ultrahigh-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS). The MD adherence of the participants was assessed using the 14-point MEDAS questionnaire of adherence to the MD. Results: We provide the whole metabolome profile of the endometrium, where 925 different metabolites were identified. Among these metabolites, lipids comprised the largest part, where polyunsaturated fatty acids (PUFAs) prevailed. Women with endometriosis and recurrent implantation failure were found to have lower levels of PUFAs compared to women with male factor and unexplained infertility (i.e., no clear endometrial alterations), identifying a metabolome profile associated with infertility diagnoses where altered endometrial functions are suspected. Moreover, MD adherence seemed to be associated with the endometrial metabolomic profile in a manner dependent on the health status of the uterus. Conclusion: The study findings provide insight into the molecular background of female infertility and lead to identification of potential molecular biomarkers and possibilities for modulating the endometrial microenvironment and, thereby, endometrial functions involved in embryo implantation and infertility.
Assuntos
Dieta Mediterrânea , Endometriose , Infertilidade Feminina , Animais , Feminino , Humanos , Masculino , Endometriose/complicações , Cromatografia Líquida , Espectrometria de Massas em Tandem , Endométrio/metabolismo , Infertilidade Feminina/metabolismo , Metaboloma , LipídeosRESUMO
Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting reproductive-aged women, but the cause remains unclear. Recent evidence has linked microbial composition with PCOS; however, the results are inconsistent. The aim of this systematic review was to gather current knowledge of the microbes across body sites (oral cavity, blood, vagina/cervix, gut) in women with PCOS, and meta-analyse the microbial diversity in PCOS. For this purpose, a systematic search using PubMed, Web of Science, Cochrane and Scopus was carried out. After selection, 34 studies met the inclusion criteria. Most of the studies associated changes in the microbiome with PCOS, whereas heterogeneity of the studies in terms of ethnicity, body mass index (BMI) and methodology, among other confounders, made it difficult to corroborate this relationship. In fact, 19 out of 34 of the studies were categorised as having high risk of bias when the quality assessment was conducted. Our meta-analysis on the gut microbiome of 14 studies demonstrated that women with PCOS possess significantly lower microbial alpha diversity compared with controls (SMDâ¯=â¯-0.204; 95% CI -0.360 to -0.048; Pâ¯=â¯0.010; I2â¯=â¯5.508, by Shannon Index), which may contribute to the development of PCOS. Nevertheless, future studies should specifically overcome the shortcomings of the current studies by through well planned and conducted studies with larger sample sizes, proper negative and positive controls and adequate case-control matching.
Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Adulto , Índice de Massa Corporal , PubMed , ReproduçãoRESUMO
A large number of different types of cancer have been shown to be associated with an abnormal metabolism of phosphatidylcholine (PC), the main component of eukaryotic cell membranes. Indeed, the overexpression of choline kinase α1 (ChoKα1), the enzyme that catalyses the bioconversion of choline to phosphocholine (PCho), has been found to associate with cell proliferation, oncogenic transformation and carcinogenesis. Hence, ChoKα1 has been described as a possible cancer therapeutic target. Moreover, the choline transporter CTL1 has been shown to be highly expressed in several tumour cell lines. In the present work, we evaluate the antiproliferative effect of PL48, a rationally designed inhibitor of ChoKα1, in MCF7 and HepG2 cell lines. In addition, we illustrate that the predominant mechanism of cellular choline uptake in these cells is mediated by the CTL1 choline transporter. A possible correlation between the inhibition of both choline uptake and ChoKα1 activity and cell proliferation in cancer cell lines is also highlighted. We conclude that the efficacy of this inhibitor on cell proliferation in both cell lines is closely correlated with its capability to block choline uptake and ChoKα1 activity, making both proteins potential targets in cancer therapy.
RESUMO
The synergy between directed chemotherapy and thermal therapy (both magnetic hyperthermia and photothermia) mediated by a nanoassembly composed of functionalized biomimetic magnetic nanoparticles (BMNPs) with the chemotherapeutic drug doxorubicin (DOXO) covered by the polymer poly(lactic-co-glycolic acid) (PLGA), decorated with TAT peptide (here referred to as TAT-PLGA(DOXO-BMNPs)) is explored in the present study. The rationale behind this nanoassembly lies in an optimization of the nanoformulation DOXO-BMNPs, already demonstrated to be more efficient against tumor cells, both in vitro and in vivo, than systemic traditional therapies. By embedding DOXO-BMNPs into PLGA, which is further functionalized with the cell-penetrating TAT peptide, the resulting nanoassembly is able to mediate drug transport (using DOXO as a drug model) and behaves as a hyperthermic agent (induced by an alternating magnetic field (AMF) or by laser irradiation with a laser power density of 2 W/cm2). Our results obtained using the HepG2 cell line show that there is a synergy between chemotherapy and thermal therapy that results in a stronger cytotoxic effect when compared to that caused by the soluble DOXO. This is probably due to the enhanced DOXO release occurring upon the application of the thermal therapy, as well as the induced local temperature rise mediated by BMNPs in the nanoassembly following exposition to AMF or to near-infrared (NIR) laser irradiation. These results represent a proof of concept demonstrating that TAT-PLGA(DOXO-BMNPs) can be used to efficiently combine therapies against tumor cells, which is a step forward in the transition from systemic to local treatments.
RESUMO
Magnetococcus marinus magnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nanoparticles as drug nanocarriers and hyperthermia agents. In the present study we explore the enhanced BMNPs internalization following upon their encapsulation by poly (lactic-co-glycolic) acid (PLGA), a Food and Drug Administration (FDA) approved molecule. Internalization is further optimized by the functionalization of the nanoformulation with the cell-penetrating TAT peptide (TATp). Our results evidence that cells treated with the nanoformulation [TAT-PLGA(BMNPs)] show up to 80% more iron internalized (after 72 h) compared to that of cells treated with BMNPs (40%), without any significant decrease in cell viability. This nanoformulation showing optimal internalization is further characterized. In particular, the present manuscript demonstrates that neither its magnetic properties nor its performance as a hyperthermia agent are significantly altered due to the encapsulation. In vitro experiments demonstrate that, following upon the application of an alternating magnetic field on U87MG cells treated with BMNPs and TAT-PLGA(BMNPs), the cytotoxic effect of BMNPs was not affected by the TAT-PLGA enveloping. Based on that, difficulties shown in previous studies related to poor cell uptake of BMNPs can be overcome by the novel nanoassembly described here.
RESUMO
MamC-mediated biomimetic magnetic nanoparticles (BMNPs) have emerged as one of the most promising nanomaterials due to their magnetic features (superparamagnetic character and large magnetic moment per particle), their novel surface properties determined by MamC, their biocompatibility and their ability as magnetic hyperthermia agents. However, the current clinical application of magnetic hyperthermia is limited due to the fact that, in order to be able to reach an effective temperature at the target site, relatively high nanoparticle concentration, as well as high magnetic field strength and/or AC frequency are needed. In the present study, the potential of BMNPs to increase the temperature upon irradiation of a laser beam in the near infrared, at a wavelength at which tissues become partially transparent, is explored. Moreover, our results also demonstrate the synergy between photothermia and chemotherapy in terms of drug release and cytotoxicity, by using BMNPs functionalized with doxorubicin, and the effectiveness of this combination therapy against tumor cells in in vitro experiments. Therefore, the findings of the present study open the possibility of a novel, alternative approach to fight localized tumors.
RESUMO
There is growing evidence that the upper female genital tract is not sterile, harbouring its own microbial communities. However, the significance and the potential effect of endometrial microorganisms on reproductive functions remain to be fully elucidated. Analysing the endometrial microbiome, the microbes and their genetic material present in the endometrium, is an emerging area of study. The initial studies suggest it is associated with poor reproductive outcomes and with different gynaecological pathologies. Nevertheless, studying a low-biomass microbial niche as is endometrium, the challenge is to conduct well-designed and well-controlled experiments in order to avoid and adjust for the risk of contamination, especially from the lower genital tract. Herein, we aim to highlight methodological considerations and propose good practice recommendations for future endometrial microbiome studies.
Assuntos
Infertilidade , Microbiota , Endométrio , Feminino , Genitália Feminina , Humanos , ÚteroRESUMO
STUDY QUESTION: Does endometrium harbour functionally active microorganisms and whether the microbial composition differs between proliferative and mid-secretory phases? SUMMARY ANSWER: Endometrium harbours functionally alive microorganisms including bacteria, viruses, archaea and fungi whose composition and metabolic functions change along the menstrual cycle. WHAT IS KNOWN ALREADY: Resident microbes in the endometrium have been detected, where microbial dysfunction has been associated with reproductive health and disease. Nevertheless, the core microorganismal composition in healthy endometrium is not determined and whether the identified bacterial DNA sequences refer to alive/functionally active microbes is not clear. Furthermore, whether there are cyclical changes in the microbial composition remains an open issue. STUDY DESIGN, SIZE, DURATION: RNA sequencing (RNAseq) data from 14 endometrial paired samples from healthy women, 7 samples from the mid-secretory phase and 7 samples from the consecutive proliferative phase were analysed for the microbial RNA sequences. PARTICIPANTS/MATERIALS, SETTING, METHODS: The raw RNAseq data were converted into FASTQ format using SRA Toolkit. The unmapped reads to human sequences were aligned to the reference database Kraken2 and visualised with Krona software. Menstrual phase taxonomic differences were performed by R package metagenomeSeq. The functional analysis of endometrial microbiota was obtained with HUMANn2 and the comparison between menstrual phases was conducted by one-way ANOVA. Human RNAseq analysis was performed using miARma-Seq and the functional enrichment analysis was carried out using gene set enrichment analysis (GSEA; HumanCyc). The integration of metabolic pathways between host and microbes was investigated. The developed method of active microbiota mapping was validated in independent sample set. MAIN RESULTS AND THE ROLE OF CHANCE: With the novel metatranscriptomic approach, we mapped the entire alive microbiota composing of >5300 microorganisms within the endometrium of healthy women. Microbes such as bacteria, fungi, viruses and archaea were identified. The validation of three independent endometrial samples from different ethnicity confirmed the findings. Significant differences in the microbial abundances in the mid-secretory vs. proliferative phases were detected with possible metabolic activity in the host-microbiota crosstalk in receptive phase endometrium, specifically in the prostanoid biosynthesis pathway and L-tryptophan metabolism. LARGE SCALE DATA: The raw RNAseq data used in the current study are available at GEO GSE86491 and at BioProject PRJNA379542. LIMITATIONS, REASONS FOR CAUTION: These pioneering results should be confirmed in a bigger sample size. WIDER IMPLICATIONS OF THE FINDINGS: Our study confirms the presence of active microbes, bacteria, fungi, viruses and archaea in the healthy human endometrium with implications in receptive phase endometrial functions, meaning that microbial dysfunction could impair the metabolic pathways important for endometrial receptivity. The results of this study contribute to the better understanding of endometrial microbiota composition in healthy women and its possible role in endometrial functions. In addition, our novel methodological pipeline for analysing alive microbes with transcriptional and metabolic activities could serve to inspire new analysis approaches in reproductive medicine. STUDY FUNDING/COMPETING INTERESTS: This work is supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER): grants RYC-2016-21199 and ENDORE SAF2017-87526-R; FEDER/Junta de Andalucía-Consejería de Economía y Conocimiento: MENDO (B-CTS-500-UGR18) and by the University of Granada Plan Propio de Investigación 2016 - Excellence actions: Unit of Excellence on Exercise and Health (UCEES) (SOMM17/6107/UGR). A.S.-L. and N.M.M. are funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-0854409 and FPU19/01638). S.A. has received honoraria for lectures from Merck. The funder had no role in this study.
Assuntos
Endométrio , Microbiota , Feminino , Humanos , Ciclo Menstrual , Menstruação , Análise de Sequência de RNARESUMO
CONTEXT: Despite the gut microbiome being widely studied in metabolic diseases, its role in polycystic ovary syndrome (PCOS) has been scarcely investigated. OBJECTIVE: Compare the gut microbiome in late fertile age women with and without PCOS and investigate whether changes in the gut microbiome correlate with PCOS-related metabolic parameters. DESIGN: Prospective, case-control study using the Northern Finland Birth Cohort 1966. SETTING: General community. PARTICIPANTS: A total of 102 PCOS women and 201 age- and body mass index (BMI)-matched non-PCOS control women. Clinical and biochemical characteristics of the participants were assessed at ages 31 and 46 and analyzed in the context of gut microbiome data at the age of 46. INTERVENTION: (s): None. MAIN OUTCOME MEASURE(S): Bacterial diversity, relative abundance, and correlations with PCOS-related metabolic measures. RESULTS: Bacterial diversity indices did not differ significantly between PCOS and controls (Shannon diversity P = .979, unweighted UniFrac P = .175). Four genera whose balance helps to differentiate between PCOS and non-PCOS were identified. In the whole cohort, the abundance of 2 genera from Clostridiales, Ruminococcaceae UCG-002, and Clostridiales Family XIII AD3011 group, were correlated with several PCOS-related markers. Prediabetic PCOS women had significantly lower alpha diversity (Shannon diversity P = .018) and markedly increased abundance of genus Dorea (false discovery rate = 0.03) compared with women with normal glucose tolerance. CONCLUSION: PCOS and non-PCOS women at late fertile age with similar BMI do not significantly differ in their gut microbial profiles. However, there are significant microbial changes in PCOS individuals depending on their metabolic health.
Assuntos
Microbioma Gastrointestinal/fisiologia , Doenças Metabólicas/etiologia , Síndrome do Ovário Policístico/microbiologia , Adulto , Fatores de Risco Cardiometabólico , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Finlândia , Humanos , Doenças Metabólicas/microbiologia , Pessoa de Meia-Idade , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/metabolismoRESUMO
The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.
RESUMO
Recent studies have shown the potential of magnetic hyperthermia in cancer treatments. However, the underlying mechanisms involved have not been yet fully described. In particular, the cell death related to magnetic hyperthermia observed in cultures incubated with low concentration of magnetic nanoparticles and under a low intensity alternating magnetic field, in which a macroscopic temperature rise is not observed, is still not understood. In the present study, we investigate the production of intracellular Reactive Oxygen Species (ROS) as a mechanism to induce cell death under these conditions. In this study, the production and influence of ROS on the viability of HepG2 human hepatoma cells (used as a model cell line) are analyzed under the application of variable magnetic fields using hyperthermia agents, such as biomimetic magnetic nanoparticles (BMNPs) mediated by magnetosome MamC protein from Magnetococcus marinus MC-1. The results show that intracellular ROS production increases up to â¼90% following upon the exposure of AMF to HepG2 cells containing BMNPs, which could determine the loss of cell viability (up to â¼40% reduction) without a significant rise in temperature. Such ROS production is linked to mitochondrial dysfunction caused by the application of AMF to cells containing BMNPs.
Assuntos
Campos Magnéticos , Espécies Reativas de Oxigênio/metabolismo , Materiais Biomiméticos/farmacologia , Sobrevivência Celular , Células Hep G2 , HumanosRESUMO
Current knowledge suggests that the uterus harbours its own microbiota, where the microbes could influence the uterine functions in health and disease; however, the core uterine microbial composition and the host-microbial relationships remain to be fully elucidated. Different studies are indicating, based on next-generation sequencing techniques, that microbial dysbiosis could be associated with several gynaecological disorders, such as endometriosis, chronic endometritis, dysfunctional menstrual bleeding, endometrial cancer, and infertility. Treatments using antibiotics and probiotics and/or prebiotics for endometrial microbial dysbiosis are being applied. Nevertheless there is no unified protocol for assessing the endometrial dysbiosis and no optimal treatment protocol for the established dysbiosis. With this review we outline the microbes (mostly bacteria) identified in the endometrial microbiome studies, the current treatments offered for bacterial dysbiosis in the clinical setting, and the future possibilities such as pro- and prebiotics and microbial transplants for modifying uterine microbial composition.
Assuntos
Endométrio/microbiologia , Útero/microbiologia , Doença , Feminino , Humanos , Microbiota , Doenças Uterinas/microbiologia , Doenças Uterinas/patologia , Doenças Uterinas/terapiaRESUMO
Choline kinase α1 (ChoKα1) has become an excellent antitumor target. Among all the inhibitors synthetized, the new compound Ff35 shows an excellent capacity to inhibit ChoKα1 activity. However, soluble Ff35 is also capable of inhibiting choline uptake, making the inhibitor not selective for ChoKα1. In this study, we designed a new protocol with the aim of disentangling whether the Ff35 biological action is due to the inhibition of the enzyme and/or to the choline uptake. Moreover, we offer an alternative to avoid the inhibition of choline uptake caused by Ff35, since the coupling of Ff35 to novel biomimetic magnetic nanoparticles (BMNPs) allows it to enter the cell through endocytosis without interacting with the choline transporter. This opens the possibility of a clinical use of Ff35. Our results indicate that Ff35-BMNPs nanoassemblies increase the selectivity of Ff35 and have an antiproliferative effect. Also, we demonstrate the effectiveness of the tandem Ff35-BMNPs and hyperthermia.
RESUMO
A full understanding of the molecular mechanism of action of choline kinase α (ChoKα) inhibitors at the cell level is essential for developing therapeutic and preventive approaches for cancer. The aim of the present study was to evaluate the effects of the ChoKα inhibitors EB-3D and EB-3P on lipid metabolism in HepG2 cells. We used [methyl-14C]choline, [1,2-14C]acetic acid and [2-3H]glycerol as exogenous precursors of the corresponding phospholipids and neutral lipids. [Methyl-14C]choline was also used to determine choline uptake. Protein levels were determined by Western blot. Ultrastructural alterations were investigated by transmission electron microscopy. In this work, we demonstrate that EB-3D and EB-3P interfere with phosphatidylcholine biosynthesis via both CDP-choline pathway and choline uptake by the cell. Moreover, the synthesis of both diacylglycerols and triacylglycerols was affected by cell exposure to both inhibitors. These effects were accompanied by a substantial decrease in cholesterol biosynthesis, as well as alterations in the expression of proteins related to cholesterol homeostasis. We also found that EB-3D and EB-3P lowered ChoKα protein levels. All these effects could be explained by the modulation of the AMP-activated protein kinase signalling pathway. We show that both inhibitors cause mitochondrial alteration and an endoplasmic reticulum stress response. EB-3D and EB-3P exert effects on ChoKα expression, AMPK activation, apoptosis, endoplasmic reticulum stress and lipid metabolism. Taken together, results show that EB-3D and EB-3P have potential anti-cancer activity through the deregulation of lipid metabolism.