Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Semin Immunopathol ; 46(3-4): 11, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134914

RESUMO

Throughout the individual's reproductive period of life the ovary undergoes continues changes, including cyclic processes of cell death, tissue regeneration, proliferation, and vascularization. Tissue-resident leucocytes particularly macrophages, play a crucial role in shaping ovarian function and maintaining homeostasis. Macrophages crucially promote angiogenesis in the follicles and corpora lutea, thereby supporting steroidogenesis. Recent research on macrophage origins and early tissue seeding has unveiled significant insights into their role in early organogenesis, e.g. in the testis. Here, we review evidence about the prenatal ovarian seeding of leucocytes, primarily macrophages with angiogenic profiles, and its connection to gametogenesis. In the prenatal ovary, germ cells proliferate, form cysts, and undergo changes that, following waves of apoptosis, give rice to the oocytes contained in primordial follicles. These follicles constitute the ovarian reserve that lasts throughout the female's reproductive life. Simultaneously, yolk-sac-derived primitive macrophages colonizing the early ovary are gradually replaced or outnumbered by monocyte-derived fetal macrophages. However, the cues indicating how macrophage colonization and follicle assembly are related are elusive. Macrophages may contribute to organogenesis by promoting early vasculogenesis. Whether macrophages contribute to ovarian lymphangiogenesis or innervation is still unknown. Ovarian organogenesis and gametogenesis are vulnerable to prenatal insults, potentially programming dysfunction in later life, as observed in polycystic ovary syndrome. Experimental and, more sparsely, epidemiological evidence suggest that adverse stimuli during pregnancy can program defective folliculogenesis or a diminished follicle reserve in the offspring. While the ovary is highly sensitive to inflammation, the involvement of local immune responses in programming ovarian health and disease remains to be thoroughly investigated.


Assuntos
Macrófagos , Ovário , Humanos , Feminino , Ovário/imunologia , Ovário/metabolismo , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Doenças Ovarianas/metabolismo , Doenças Ovarianas/patologia , Gravidez , Folículo Ovariano/metabolismo
2.
Cells ; 11(7)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406783

RESUMO

The total body irradiation of lymphomas and co-irradiation in the treatment of adjacent solid tumors can lead to a reduced ovarian function, premature ovarian insufficiency, and menopause. A small number of studies has assessed the radiation-induced damage of primordial follicles in animal models and humans. Studies are emerging that evaluate radiation-induced damage to the surrounding ovarian tissue including stromal and immune cells. We reviewed basic laboratory work to assess the current state of knowledge and to establish an experimental setting for further studies in animals and humans. The experimental approaches were mostly performed using mouse models. Most studies relied on single doses as high as 1 Gy, which is considered to cause severe damage to the ovary. Changes in the ovarian reserve were related to the primordial follicle count, providing reproducible evidence that radiation with 1 Gy leads to a significant depletion. Radiation with 0.1 Gy mostly did not show an effect on the primordial follicles. Fewer data exist on the effects of radiation on the ovarian microenvironment including theca-interstitial, immune, endothelial, and smooth muscle cells. We concluded that a mouse model would provide the most reliable model to study the effects of low-dose radiation. Furthermore, both immunohistochemistry and fluorescence-activated cell sorting (FACS) analyses were valuable to analyze not only the germ cells but also the ovarian microenvironment.


Assuntos
Reserva Ovariana , Insuficiência Ovariana Primária , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Folículo Ovariano , Insuficiência Ovariana Primária/etiologia , Irradiação Corporal Total/efeitos adversos
3.
Nat Commun ; 12(1): 4706, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349112

RESUMO

During mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc. We report a functional role of MMc in promoting fetal immune development. MMc induces preferential differentiation of hematopoietic stem cells in fetal bone marrow towards monocytes within the myeloid compartment. Neonatal mice with higher numbers of MMc and monocytes show enhanced resilience against cytomegalovirus infection. Similarly, higher numbers of MMc in human cord blood are linked to a lower number of respiratory infections during the first year of life. Our data highlight the importance of MMc in promoting fetal immune development, potentially averting the threats caused by early life exposure to pathogens.


Assuntos
Quimerismo , Feto/imunologia , Imunidade Materno-Adquirida/imunologia , Infecções/imunologia , Animais , Medula Óssea/metabolismo , Epigenoma , Feminino , Sangue Fetal/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Camundongos , Monócitos/citologia , Gravidez , Linfócitos T/citologia
4.
J Allergy Clin Immunol ; 145(6): 1641-1654, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305348

RESUMO

BACKGROUND: Prenatal challenges such as maternal stress perception increase the risk and severity of asthma during childhood. However, insights into the trajectories and targets underlying the pathogenesis of prenatally triggered asthma are largely unknown. The developing lung and immune system may constitute such targets. OBJECTIVE: Here we have aimed to identify the differential sex-specific effects of prenatal challenges on lung function, immune response, and asthma severity in mice. METHODS: We generated bone marrow chimeric (BMC) mice harboring either prenatally stress-exposed lungs or a prenatally stress-exposed immune (hematopoietic) system and induced allergic asthma via ovalbumin. Next-generation sequencing (RNA sequencing) of lungs and assessment of airway epithelial barrier function in ovalbumin-sensitized control and prenatally stressed offspring was also performed. RESULTS: Profoundly enhanced airway hyperresponsiveness, inflammation, and fibrosis were exclusively present in female BMC mice with prenatally stress-exposed lungs. These effects were significantly perpetuated if both the lungs and the immune system had been exposed to prenatal stress. A prenatally stress-exposed immune system alone did not suffice to increase the severity of these asthma features. RNA sequencing analysis of lungs from prenatally stressed, non-BMC, ovalbumin-sensitized females unveiled a deregulated expression of genes involved in asthma pathogenesis, tissue remodeling, and tight junction formation. It was also possible to independently confirm a tight junction disruption. In line with this, we identified an altered perinatal and/or postnatal expression of genes involved in lung development along with an impaired alveolarization in female prenatally stressed mice. CONCLUSION: Here we have shown that the fetal origin of asthma is orchestrated by a disrupted airway epithelium and further perpetuated by a predisposed immune system.


Assuntos
Asma/imunologia , Pulmão/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Mucosa Respiratória/imunologia , Animais , Medula Óssea/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Imunidade/imunologia , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Gravidez , Hipersensibilidade Respiratória/imunologia , Junções Íntimas/imunologia
5.
Am J Physiol Endocrinol Metab ; 317(1): E109-E120, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30990748

RESUMO

Antenatal stress increases the prevalence of diseases in later life, which shows a strong sex-specific effect. However, the underlying mechanisms remain unknown. Maternal glucocorticoids can be elevated by stress and are potential candidates to mediate the effects of stress on the offspring sex-specifically. A comprehensive evaluation of dynamic maternal and placental mechanisms modulating fetal glucocorticoid exposure upon maternal stress was long overdue. Here, we addressed this gap in knowledge by investigating sex-specific responses to midgestational stress in mice. We observed increased levels of maternal corticosterone, the main glucocorticoid in rodents, along with higher corticosteroid-binding globulin levels at midgestation in C57Bl/6 dams exposed to sound stress. This resulted in elevated corticosterone in female fetuses, whereas male offspring were unaffected. We identified that increased placental expression of the glucocorticoid-inactivating enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2; Hsd11b2 gene) and ATP-binding cassette transporters, which mediate glucocorticoid efflux toward maternal circulation, protect male offspring from maternal glucocorticoid surges. We generated mice with an Hsd11b2 placental-specific disruption (Hsd11b2PKO) and observed moderately elevated corticosterone levels in offspring, along with increased body weight. Subsequently, we assessed downstream glucocorticoid receptors and observed a sex-specific differential modulation of placental Tsc22d3 expression, which encodes the glucocorticoid-induced leucine zipper protein in response to stress. Taken together, our observations highlight the existence of unique and well-orchestrated mechanisms that control glucocorticoid transfer, exposure, and metabolism in the mouse placenta, pinpointing toward the existence of sex-specific fetal glucocorticoid exposure windows during gestation in mice.


Assuntos
Feto/metabolismo , Glucocorticoides/metabolismo , Placenta/metabolismo , Caracteres Sexuais , Estresse Psicológico/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Animais , Aromatase/genética , Corticosterona/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Complicações na Gravidez/metabolismo , Complicações na Gravidez/psicologia , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/genética
6.
Front Immunol ; 10: 3017, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038609

RESUMO

Maternal glucocorticoids critically rise during pregnancy reaching up to a 20-fold increase of mid-pregnancy concentrations. Concurrently, another steroid hormone, progesterone, increases. Progesterone, which shows structural similarities to glucocorticoids, can bind the intracellular glucocorticoid receptor, although with lower affinity. Progesterone is essential for the establishment and continuation of pregnancy and it is generally acknowledged to promote maternal immune tolerance to fetal alloantigens through a wealth of immunomodulatory mechanisms. Despite the potent immunomodulatory capacity of glucocorticoids, little is known about their role during pregnancy. Here we aim to compare general aspects of glucocorticoids and progesterone during pregnancy, including shared common steroidogenic pathways, plasma transporters, regulatory pathways, expression of receptors, and mechanisms of action in immune cells. It was recently acknowledged that progesterone receptors are not ubiquitously expressed on immune cells and that pivotal features of progesterone induced- maternal immune adaptations to pregnancy are mediated via the glucocorticoid receptor, including e.g., T regulatory cells expansion. We hypothesize that a tight equilibrium between progesterone and glucocorticoids is critically required and recapitulate evidence supporting that their disequilibrium underlie pregnancy complications. Such a disequilibrium can occur, e.g., after maternal stress perception, which triggers the release of glucocorticoids and impair progesterone secretion, resulting in intrauterine inflammation. These endocrine misbalance might be interconnected, as increase in glucocorticoid synthesis, e.g., upon stress, may occur in detriment of progesterone steroidogenesis, by depleting the common precursor pregnenolone. Abundant literature supports that progesterone deficiency underlies pregnancy complications in which immune tolerance is challenged. In these settings, it is largely yet undefined if and how glucocorticoids are affected. However, although progesterone immunomodulation during pregnancy appear to be chiefly mediated glucocorticoid receptors, excess glucocorticoids cannot compensate by progesterone deficiency, indicating that additional und still undercover mechanisms are at play.


Assuntos
Desenvolvimento Fetal , Glucocorticoides/sangue , Gravidez/metabolismo , Progesterona/sangue , Animais , Feminino , Humanos , Gravidez/sangue , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(2): E181-E190, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28049829

RESUMO

Pregnancy is one of the strongest inducers of immunological tolerance. Disease activity of many autoimmune diseases including multiple sclerosis (MS) is temporarily suppressed by pregnancy, but little is known about the underlying molecular mechanisms. Here, we investigated the endocrine regulation of conventional and regulatory T cells (Tregs) during reproduction. In vitro, we found the pregnancy hormone progesterone to robustly increase Treg frequencies via promiscuous binding to the glucocorticoid receptor (GR) in T cells. In vivo, T-cell-specific GR deletion in pregnant animals undergoing experimental autoimmune encephalomyelitis (EAE), the animal model of MS, resulted in a reduced Treg increase and a selective loss of pregnancy-induced protection, whereas reproductive success was unaffected. Our data imply that steroid hormones can shift the immunological balance in favor of Tregs via differential engagement of the GR in T cells. This newly defined mechanism confers protection from autoimmunity during pregnancy and represents a potential target for future therapy.


Assuntos
Gravidez/imunologia , Receptores de Glucocorticoides/imunologia , Linfócitos T/imunologia , Animais , Autoimunidade , Encefalomielite Autoimune Experimental/imunologia , Feminino , Tolerância Imunológica , Camundongos Endogâmicos C57BL , Progesterona/imunologia
8.
Circ Res ; 119(1): 55-68, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27199465

RESUMO

RATIONALE: We hypothesized that cluster of differentiation 74 (CD74) downregulation on placental macrophages, leading to altered macrophage-trophoblast interaction, is involved in preeclampsia. OBJECTIVE: Preeclamptic pregnancies feature hypertension, proteinuria, and placental anomalies. Feto-placental macrophages regulate villous trophoblast differentiation during placental development. Disturbance of this well-balanced regulation can lead to pathological pregnancies. METHODS AND RESULTS: We performed whole-genome expression analysis of placental tissue. CD74 was one of the most downregulated genes in placentas from preeclamptic women. By reverse transcriptase-polymerase chain reaction, we confirmed this finding in early-onset (<34 gestational week, n=26) and late-onset (≥34 gestational week, n=24) samples from preeclamptic women, compared with healthy pregnant controls (n=28). CD74 protein levels were analyzed by Western blot and flow cytometry. We identified placental macrophages to express CD74 by immunofluorescence, flow cytometry, and RT-PCR. CD74-positive macrophages were significantly reduced in preeclamptic placentas compared with controls. CD74-silenced macrophages showed that the adhesion molecules ALCAM, ICAM4, and Syndecan-2, as well as macrophage adhesion to trophoblasts were diminished. Naive and activated macrophages lacking CD74 showed a shift toward a proinflammatory signature with an increased secretion of tumor necrosis factor-α, chemokine (C-C motif) ligand 5, and monocyte chemotactic protein-1, when cocultured with trophoblasts compared with control macrophages. Trophoblasts stimulated by these factors express more CYP2J2, sFlt1, TNFα, and IL-8. CD74-knockout mice showed disturbed placental morphology, reduced junctional zone, smaller placentas, and impaired spiral artery remodeling with fetal growth restriction. CONCLUSIONS: CD74 downregulation in placental macrophages is present in preeclampsia. CD74 downregulation leads to altered macrophage activation toward a proinflammatory signature and a disturbed crosstalk with trophoblasts.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Estudos de Casos e Controles , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CXCL5/metabolismo , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Sindecana-2/metabolismo , Trofoblastos/citologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Placenta ; 39: 7-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26992668

RESUMO

INTRODUCTION: Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a reliable tool to analyse gene expression profiles. The expression of housekeeping genes generally serves as a reference for mRNA amount, assuming that it remains stable under pathophysiological and experimental conditions. To date, an empirical validation of reference genes suitable for RT-qPCR-based studies in the mouse placenta is missing. METHODS: We used NormFinder and BestKeeper statistical software to analyse the expression stability of candidate housekeeping genes quantified by RT-qPCR in mouse placentas. RESULTS: Fifteen of 32 potential candidate housekeeping genes analysed on gestation day (gd) 16.5 in mouse placentas exhibited an optimal cycle threshold (Ct). Among them B2m, Polr2a, Ubc, and Ywhaz genes showed the highest expression stability in placentas from control, but also experimentally-challenged mice. These genes as well as the currently widely used housekeeping genes Hprt1, Actb, and Gapdh were selected for further quality assessments. We quantified the Ct values of these selected genes in placental samples obtained from wild-type or genetically engineered dams at different gds, or upon selected experimental interventions known to affect placental phenotype. Among all housekeeping genes analysed, Polr2a was the most stably expressed and its expression stability excelled in combination with Ubc. DISCUSSION: Polr2a, especially in combination with Ubc, can be proposed as highly suitable endogenous reference for gene expression analysis in mouse-derived placental tissue. Moreover, the validation of both genes as a stable reference gene in human placenta-derived tissue strengthens the translational relevance of RT-qPCR findings using mouse placenta.


Assuntos
Perfilação da Expressão Gênica/normas , Genes Essenciais , Placenta/metabolismo , Animais , Antígenos de Neoplasias/genética , Feminino , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Placenta/química , Gravidez , RNA Polimerase II/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
11.
J Clin Invest ; 125(4): 1726-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25774501

RESUMO

Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor- or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/prevenção & controle , Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Placenta/imunologia , Insuficiência Placentária/imunologia , Complicações na Gravidez/imunologia , Progesterona/fisiologia , Estresse Psicológico/imunologia , Animais , Metilação de DNA , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Retardo do Crescimento Fetal/imunologia , Feto/imunologia , Feto/patologia , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/genética , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Ruído/efeitos adversos , Placenta/metabolismo , Circulação Placentária , Insuficiência Placentária/etiologia , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/psicologia , Progesterona/biossíntese , Progesterona/uso terapêutico , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Estresse Psicológico/genética
12.
Chimerism ; 5(3-4): 99-102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483743

RESUMO

Maternal microchimerism, which occurs naturally during gestation in hemochorial placental mammals upon transplacental migration of maternal cells into the fetus, is suggested to significantly influence the fetal immune system. In our previous publication, we explored the sensitivity of quantitative polymerase chain reaction and flow cytometry to detect cellular microchimerism. With that purpose, we created mixed cells suspensions in vitro containing reciprocal frequencies of wild type cells and cells positive for enhanced green fluorescent protein or CD45.1(+), respectively. Here, we now introduce the H-2 complex, which defines the major histocompatibility complex in mice and is homologous to HLA in human, as an additional target to detect maternal microchimerism among fetal haploidentical cells. We envision that this advanced approach to detect maternal microchimeric cells by flow cytometry facilitates the pursuit of phenotypic, gene expression and functional analysis of microchimeric cells in future studies.


Assuntos
Quimerismo , Citometria de Fluxo/métodos , Células-Tronco Hematopoéticas/metabolismo , Sistema Imunitário/embriologia , Troca Materno-Fetal , Animais , Feminino , Feto/embriologia , Feto/imunologia , Feto/metabolismo , Proteínas de Fluorescência Verde/análise , Células-Tronco Hematopoéticas/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Antígenos Comuns de Leucócito/análise , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez
13.
J Immunol Methods ; 406: 74-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24657636

RESUMO

Cellular microchimerism is defined as the presence of small populations of cells from one individual in another genetically distinct individual. The pivotal role of cellular microchimerism in a variety of immune settings is increasingly recognized, e.g. in context of pregnancy, transplantation and cancer. However, the detection of chimeric cells is overshadowed by technical limitations. This study aimed to overcome these limitations by testing the sensitivity and detection limit of a molecular biology approach (quantitative polymerase chain reaction, qPCR) and a cellular approach (flow cytometry) in order to identify experimentally induced cellular microchimerism in mice. Leukocytes isolated from lymph nodes or spleens of transgenic enhanced green fluorescent protein (eGFP) and CD45.1 mice respectively were used as targets to be detected as microchimeric cells among wild type (wt) or haploidentical cells. The detection limit of microchimeric cells by flow cytometry was 0.05% or lower for the respective eGFP(+) or CD45.1(+) cell subsets, which equals 48 cells or fewer per 1×10(5) wt cells. The detection limit of CD45.1(+) and CD45.2(+) cells among haploidentical CD45.1(+)2(+) cells by flow cytometry was 48 cells (0.05%) and 198 cells (0.2%), respectively. Using qPCR, a detection limit of 198 eGFP(+) cells per 1×10(5) wt cells, respective 0.2%, could be achieved. We here introduce two technical approaches to reliably detect low number of chimeric cells at a low detection limit and high sensitivity in transgenic mouse systems.


Assuntos
Quimerismo , Citometria de Fluxo/métodos , Leucócitos/imunologia , Linfonodos/citologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Baço/citologia , Animais , Proteínas de Fluorescência Verde/genética , Limite de Detecção , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
J Mol Med (Berl) ; 90(9): 1047-57, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22358070

RESUMO

Uterine natural killer (NK) cells are pivotal for successful mammalian reproduction. However, insights on functionally distinct subpopulations of uterine NK cells are largely elusive. Furthermore, translation of findings from murine into human pregnancy has been overshadowed by the limited number of mutual phenotypic NK cell markers. We here provide evidence that a subset of murine mature NK (mNK) cells present at the feto-maternal interface, identified as CD27(low)DX5(+)CD3(neg), is pivotal in maintaining pregnancy. This mNK subset has low cytotoxic capacity, produces higher amounts of interferon (IFN)-γ, and expresses functional homologs of human NK cell immunoglobulin-like receptors. We further show that bone marrow-derived CD27(low) mNK cells are selectively recruited to the uterus and ameliorate the rate of fetal loss when adoptively transferred into alymphoid RAG2(-/-)/γc(-/-) mice. Additionally, expression of CD27 is down-modulated on mNK cells upon migration to the uterus. Hence, we propose the existence of a regulatory mNK cell subset, which is licensed toward successful pregnancy maintenance at the fetomaternal interface in mice. As CD27(low) NK cells are also present in human decidua, the CD27(low) NK subset may provide a tool to foster translational research in reproduction, aiming to improve pregnancy outcome in humans.


Assuntos
Células Matadoras Naturais/imunologia , Manutenção da Gravidez , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Feminino , Humanos , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poli I-C/imunologia , Gravidez , Útero/imunologia
15.
J Reprod Immunol ; 92(1-2): 33-44, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22018827

RESUMO

PCOS, a major cause of anovulatory sterility, is associated with obesity, insulin resistance and chronic inflammation. New evidence suggests that the immune system aggravates the clinical features of PCOS. Our aim was to study the immune, metabolic and endocrine features of a mouse model of PCOS elicited by androgenisation using dehydroepiandrosterone (DHEA). We observed a significant weight gain and insulin resistance in DHEA-androgenised mice, coupled with the formation of ovarian follicular cysts. DHEA up-regulated the expression of vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 in the granulosa cell layer of the majority of cysts, and VCAM-1 expression in the theca cell layer of all follicles and cysts. The expression of these markers was low in control tissue. Peritoneal cells from PCOS-mice showed enhanced production of inflammatory cytokines, suggesting an association between chronic inflammation and PCOS. In addition, DHEA-androgenisation induced the activation of CD4(+) cells both in vivo and in vitro, and their expression of the respective ligands for VCAM-1 and ICAM-1, VLA-4 and LFA-1, as assessed in vitro. CD4(+) cells were present in androgenised ovaries, especially in the granulosa cell layer of cysts with high VCAM-1 expression. Herein, we present novel evidence that the immune system is activated systemically and locally in a mouse model for PCOS. We propose that VCAM-1 is involved in aggravating PCOS symptoms by promoting leukocyte recruitment to the ovaries and perpetuating local inflammation. These findings offer novel therapeutic opportunities for PCOS, such as blockage of VCAM-1 expression.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Peritônio/metabolismo , Síndrome do Ovário Policístico/imunologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Desidroepiandrosterona/administração & dosagem , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovário/patologia , Peritônio/efeitos dos fármacos , Peritônio/patologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
J Reprod Immunol ; 90(1): 3-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21641655

RESUMO

Fetal development is largely dependent on the mother. However, pregnancy maintenance and consequently fetal development are highly vulnerable and sensitive to disruption, triggered by, for example, prenatal stress challenge. Such prenatal stress challenge modulates the maternal endocrine and immune responses during pregnancy e.g. by decreasing levels of progesterone. Prenatal stress also has negative repercussions for the child's health later in life. It has been reported that prenatal stress increases the risk of the child to develop chronic immune diseases such as allergies and asthma. We therefore propose that prenatal stress challenge - associated with a decrease in maternal progesterone - impairs fetal immune development (immune ontogeny). Such impaired immune ontogeny carries over into postnatal life, rendering the child more prone to developing chronic immune diseases. This purported association urgently requires a fresh evaluation in order to identify biomarkers and cascades of events. In the present review, we outline candidate biomarkers involved in fetal immune ontogeny, which may be targets of prenatal stress challenge and subsequently determine offspring disease risk. Identification of these stress-sensitive biomarkers may allow detection of pregnant women at risk to deliver chronic immune disease-prone offspring. The creation of therapeutic interventions designed to prevent negative consequences of prenatal stress would then be within reach.


Assuntos
Manutenção da Gravidez , Progesterona/sangue , Estresse Fisiológico , Suscetibilidade a Doenças , Feminino , Humanos , Gravidez , Cuidado Pré-Natal , Progesterona/biossíntese , Fatores de Risco
17.
Reproduction ; 131(3): 591-602, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16514202

RESUMO

The present study investigated the role of the N, N{'}-dimethylbiguanide metformin (50 mg/100 g body weight in 0.05 ml water, given orally with a canulla) in the prevention of endocrine and immune disorders provoked by the hyperandrogenization with dehydroepiandrosterone (DHEA) in prepuberal BALB/c mice. The treatment with DHEA (6 mg/100 g body weight in 0.1 ml oil) for 20 consecutive days, recreates a mouse model that resembles some aspects of the human polycystic ovary syndrome (PCOS). The treatment with DHEA did not modify either body mass index (BMI) or blood glucose levels, but did increase fasting insulin levels when compared with controls. Markers of ovarian function - serum estradiol (E), progesterone (P) and ovarian prostaglandin E (PGE) - were evaluated. The treatment with DHEA increased serum E and P levels while ovarian PGE diminished. When metformin was administered together with DHEA, serum insulin, E and P levels, and ovarian PGE values did not differ when compared with controls. Using flow cytometry assays we found that the treatment with DHEA diminished the percentage of the CD4 + T lymphocyte population and increased the percentage of the CD8 + T lymphocyte population from both ovarian tissue and retroperitoneal lymph nodes. However, when metformin was administered together with DHEA, the percentages of CD4 + and CD8 + T lymphocyte populations from both ovarian tissue and retroperitoneal lymph nodes were similar to those observed in controls. Finally, when DHEA was administered alone it increased the serum tumor necrosis factor-alpha (TNF-alpha ) levels when compared with controls; however, when metformin was administered together with DHEA, serum TNF-alpha levels were similar to controls. These results indicate that metformin is able, directly or indirectly, to avoid the endocrine and immune alterations produced when mice are hyperandrogenized with DHEA.


Assuntos
Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Síndrome do Ovário Policístico/tratamento farmacológico , Androgênios , Animais , Glicemia/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Desidroepiandrosterona , Estradiol/sangue , Jejum , Feminino , Citometria de Fluxo , Insulina/sangue , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Ovário/imunologia , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/imunologia , Progesterona/sangue , Prostaglandinas E/metabolismo , Espaço Retroperitoneal , Maturidade Sexual , Fator de Necrose Tumoral alfa/análise
18.
Neuroimmunomodulation ; 12(5): 285-92, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16166807

RESUMO

The aim of the present report was to study the role of high levels of dehydroepiandrosterone (DHEA) on the ovarian function and embryonic resorption during early pregnancy in BALB/c mice. Pregnant animals were injected with DHEA following both the post-implantatory (DHEA-2) and peri-implantatory (DHEA-6) models. Morphological studies of implantation sites showed 40% of embryonic resorption in the DHEA-2 group while 100% of resorption was observed in the DHEA-6 group. Serum samples of both DHEA-2 and DHEA-6 groups showed higher estradiol levels and a lower progesterone concentration than those of control groups. Ovarian prostaglandin E levels after both DHEA-2 and DHEA-6 treatments increased when compared to control groups. The antioxidant metabolite glutathione diminished during both DHEA treatments. In summary, the data presented here suggest that DHEA treatment during early pregnancy modulates the ovarian function and is responsible for embryonic resorption with different degrees depending on when it is administered.


Assuntos
Adjuvantes Imunológicos/farmacologia , Desidroepiandrosterona/farmacologia , Glutationa/efeitos dos fármacos , Animais , Implantação do Embrião/fisiologia , Perda do Embrião/induzido quimicamente , Embrião de Mamíferos , Desenvolvimento Embrionário , Estradiol/sangue , Feminino , Glutationa/análise , Camundongos , Camundongos Endogâmicos BALB C , Ovário/efeitos dos fármacos , Gravidez , Progesterona/sangue , Fatores de Tempo
19.
J Reprod Immunol ; 64(1-2): 59-74, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15596227

RESUMO

The purpose of the present report was to study the possible relationship between ovarian functionality and the immune response during cystogenesis induced by androgenization with dehydroepiandrosterone (DHEA). Daily injection of DHEA (6 mg/kg body weight) for 20 consecutive days induced ovarian cysts in BALB/c mice. As markers of ovarian function, serum estradiol (E) and progesterone (P) and the ovarian inmunomodulator prostaglandin E (PGE) were analyzed. In order to know how the integrity of the tissue was altered after induction of cystogenesis, the oxidative status was also evaluated. Serum E and P levels, and ovarian PGE concentration, were increased in animals with cysts compared with healthy controls. The oxidant status (quantified by malondialdehyde (MDA) formed after the breakdown of the cellular membrane by free radical mechanisms) was augmented, meanwhile the antioxidant (evaluated by the glutathione (GSH) content) diminished during the induction of cystogenesis. Both immunohistochemical and flow cytometry assays demonstrated that DHEA treatment increased the number of T lymphocytes infiltrating ovarian tissue. Therefore, while ovarian controls showed equivalent expression of CD4+ and CD8+ T cell subsets, injection of DHEA yielded a selective ovarian T cell infiltration as demonstrated by enhanced CD8+ and diminished CD4+ T lymphocyte expression. These results show that the development of cysts involves changes in ovarian function and an imbalance in the oxidant-antioxidant equilibrium. We observed also both an increased and selective T lymphocyte infiltration.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Desidroepiandrosterona/administração & dosagem , Cistos Ovarianos/imunologia , Ovário/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Cistos Ovarianos/sangue , Cistos Ovarianos/induzido quimicamente , Ovário/química , Ovário/patologia , Oxirredução , Estresse Oxidativo/imunologia , Prostaglandinas E/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA