Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sustain Energy Fuels ; 7(14): 3384-3394, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37441238

RESUMO

Cobalt(ii) complexes featuring hexadentate amino-pyridyl ligands have been recently discovered as highly active catalysts for the Hydrogen Evolution Reaction (HER), whose high performance arises from the possibility of assisting proton transfer processes via intramolecular routes involving detached pyridine units. With the aim of gaining insights into such catalytic routes, three new proton reduction catalysts based on amino-polypyridyl ligands are reported, focusing on substitution of the pyridine ortho-position. Specifically, a carboxylate (C2) and two hydroxyl substituted pyridyl moieties (C3, C4) are introduced with the aim of promoting intramolecular proton transfer which possibly enhances the efficiency of the catalysts. Foot-of-the-wave and catalytic Tafel plot analyses have been utilized to benchmark the catalytic performances under electrochemical conditions in acetonitrile using trifluoroacetic acid as the proton source. In this respect, the cobalt complex C3 turns out to be the fastest catalyst in the series, with a maximum turnover frequency (TOF) of 1.6 (±0.5) × 105 s-1, but at the expense of large overpotentials. Mechanistic investigations by means of Density Functional Theory (DFT) suggest a typical ECEC mechanism (i.e. a sequence of reduction - E - and protonation - C - events) for all the catalysts, as previously envisioned for the parent unsubstituted complex C1. Interestingly, in the case of complex C2, the catalytic route is triggered by initial protonation of the carboxylate group resulting in a less common (C)ECEC mechanism. The pivotal role of the hexadentate chelating ligand in providing internal proton relays to assist hydrogen elimination is further confirmed within this novel class of molecular catalysts, thus highlighting the relevance of a flexible polypyridine ligand in the design of efficient cobalt complexes for the HER. Photochemical studies in aqueous solution using [Ru(bpy)3]2+ (where bpy = 2,2'-bipyridine) as the sensitizer and ascorbate as the sacrificial electron donor support the superior performance of C3.

2.
Molecules ; 26(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770875

RESUMO

Copper(II) complexes with 1,1,1-trifluoro-4-(4-methoxyphenyl)butan-2,4-dione (HL1) were synthesized and characterized by elemental analysis, FT-IR spectroscopy, and single crystal X-ray diffraction. The biological properties of HL1 and cis-[Cu(L1)2(DMSO)] (3) were examined against Gram-positive and Gram-negative bacteria and opportunistic unicellular fungi. The cytotoxicity was estimated towards the HeLa and Vero cell lines. Complex 3 demonstrated antibacterial activity towards S. aureus comparable to that of streptomycin, lower antifungal activity than the ligand HL1 and moderate cytotoxicity. The bioactivity was compared with the activity of compounds of similar structures. The effect of changing the position of the methoxy group at the aromatic ring in the ligand moiety of the complexes on their antimicrobial and cytotoxic activity was explored. We propose that complex 3 has lower bioavailability and reduced bioactivity than expected due to strong intermolecular contacts. In addition, molecular docking studies provided theoretical information on the interactions of tested compounds with ribonucleotide reductase subunit R2, as well as the chaperones Hsp70 and Hsp90, which are important biomolecular targets for antitumor and antimicrobial drug search and design. The obtained results revealed that the complexes displayed enhanced affinity over organic ligands. Taken together, the copper(II) complexes with the trifluoromethyl methoxyphenyl-substituted ß-diketones could be considered as promising anticancer agents with antibacterial properties.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Cetonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Cetonas/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Células Vero
3.
ChemSusChem ; 14(8): 1874-1885, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33650260

RESUMO

Four novel polypyridine cobalt(II) complexes were developed based on a hexadentate ligand scaffold bearing either electron-withdrawing (-CF3 ) or electron-donating (-OCH3 ) groups in different positions of the ligand. Experiments and theoretical calculations were combined to perform a systematic investigation of the effect of the ligand modification on the hydrogen evolution reaction. The results indicated that the position, rather than the type of substituent, was the dominating factor in promoting catalysis. The best performances were observed upon introduction of substituents on the pyridine moiety of the hexadentate ligand, which promoted the formation of the Co(II)H intermediate via intramolecular proton transfer reactions with low activation energy. Quantum yields of 11.3 and 10.1 %, maximum turnover frequencies of 86.1 and 76.6 min-1 , and maximum turnover numbers of 5520 and 4043 were obtained, respectively, with a -OCH3 and a -CF3 substituent.

4.
Chemistry ; 23(28): 6768-6771, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28398602

RESUMO

The first heptacoordinate cobalt catalyst for light-driven hydrogen production in water has been synthesized and characterized. Photochemical experiments using [Ru(bpy)3 ]2+ as photosensitizer gave a turnover number (TON) of 16300 mol H2 (mol cat.)-1 achieved in 2 hours of irradiation with visible (475 nm) light. This promising result provides a path forward in the development of new structures to improve the efficiency of the catalysis.

5.
Dalton Trans ; 45(20): 8422-7, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27109258

RESUMO

Dinuclear clathrochelate complexes are easily accessible by reaction of zinc(ii) triflate or cobalt(ii) nitrate with arylboronic acids and phenoldioximes. The utilization of brominated arylboronic acids and/or brominated phenoldioximes allows preparing clathrochelates with two, three, five or seven bromine atoms on the outside. These clathrochelates can undergo Pd-catalyzed cross-coupling reactions with 3- and 4-pyridylboronic acid to give new metalloligands featuring up to seven pyridyl groups. The pyridyl-capped clathrochelates display characteristics which make them interesting building blocks for structural supramolecular chemistry: they are rigid, large (up to 2.7 nm), luminescent (for M = Zn), and anionic. The pentatopic pyridyl ligands display an unusual trigonal bipyramidal geometry.

6.
Inorg Chem ; 52(20): 11688-90, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23981278

RESUMO

Metal-mediated cleavage of the N-N bond is a rarely observed phenomenon in the chemistry of nitrous oxide (N2O). We demonstrate that, upon activation of N2O with N-heterocyclic carbenes, zerovalent nickel is able to insert into the N-N bond to give nitrosyl complexes.

7.
Chemistry ; 18(46): 14867-74, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23019077

RESUMO

Multicomponent reactions between 1,4-benzenediboronic acid, catechol, and different pyridyl ligands are reported. The condensation of 1,4-benzenediboronic acid with catechol gives 1,4-bis(benzodioxaborole)benzene. Upon crystallization, the ester aggregates with the N-donor ligands through dative B-N bonds. Depending on the nature of the pyridyl ligand, molecularly defined macrocycles or polymeric structures are obtained. 1D polymers are formed with 4,4-bipyridine and 1,2-di(4-pyridyl)ethylene, whereas a 2D network is obtained with the tetradentate ligand tetra(4-pyridylphenyl)ethylene. These results highlight the utility of dative B-N bonds in structural supramolecular chemistry and crystal engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA