Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
2.
Adv Radiat Oncol ; 7(2): 100886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387423

RESUMO

Purpose: The aim was to develop a novel artificial intelligence (AI)-guided clinical decision support system, to predict radiation doses to subsites of the mandible using diagnostic computed tomography scans acquired before any planning of head and neck radiation therapy (RT). Methods and Materials: A dose classifier was trained using RT plans from 86 patients with oropharyngeal cancer; the test set consisted of an additional 20 plans. The classifier was trained to predict whether mandible subsites would receive a mean dose >50 Gy. The AI predictions were prospectively evaluated and compared with those of a specialist head and neck radiation oncologist for 9 patients. Positive predictive value (PPV), negative predictive value (NPV), Pearson correlation coefficient, and Lin concordance correlation coefficient were calculated to compare the AI predictions to those of the physician. Results: In the test data set, the AI predictions had a PPV of 0.95 and NPV of 0.88. For 9 patients evaluated prospectively, there was a strong correlation between the predictions of the AI algorithm and physician (P = .72, P < .001). Comparing the AI algorithm versus the physician, the PPVs were 0.82 versus 0.25, and the NPVs were 0.94 versus 1.0, respectively. Concordance between physician estimates and final planned doses was 0.62; this was 0.71 between AI-based estimates and final planned doses. Conclusion: AI-guided decision support increased precision and accuracy of pre-RT dental dose estimates.

3.
Int J Radiat Oncol Biol Phys ; 110(1): 87-99, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534899

RESUMO

PURPOSE: Dosimetric and clinical predictors of radiation-induced optic nerve/chiasm neuropathy (RION) after single-fraction stereotactic radiosurgery (SRS) or hypofractionated (2-5 fractions) radiosurgery (fSRS) were analyzed from pooled data that were extracted from published reports (PubMed indexed from 1990 to June 2015). This study was undertaken as part of the American Association of Physicists in Medicine Working Group on Stereotactic Body Radiotherapy, investigating normal tissue complication probability (NTCP) after hypofractionated radiation. METHODS AND MATERIALS: Eligible studies described dose delivered to optic nerve/chiasm and provided crude or actuarial toxicity risks, with visual endpoints (ie, loss of visual acuity, alterations in visual fields, and/or blindness/complete vision loss). Studies of patients with optic nerve sheath tumors, optic nerve gliomas, or ocular/uveal melanoma were excluded to obviate direct tumor effects on visual outcomes, as were studies not specifying causes of vision loss (ie, tumor progression vs RION). RESULTS: Thirty-four studies (1578 patients) were analyzed. Histologies included pituitary adenoma, cavernous sinus meningioma, craniopharyngioma, and malignant skull base tumors. Prior resection (76% of patients) did not correlate with RION risk (P = .66). Prior irradiation (6% of patients) was associated with a crude 10-fold increased RION risk versus no prior radiation therapy. In patients with no prior radiation therapy receiving SRS/fSRS in 1-5 fractions, optic apparatus maximum point doses resulting in <1% RION risks include 12 Gy in 1 fraction (which is greater than our recommendation of 10 Gy in 1 fraction), 20 Gy in 3 fractions, and 25 Gy in 5 fractions. Omitting multi-fraction data (and thereby eliminating uncertainties associated with dose conversions), a single-fraction dose of 10 Gy was associated with a 1% RION risk. Insufficient details precluded modeling of NTCP risks after prior radiation therapy. CONCLUSIONS: Optic apparatus NTCP and tolerance doses after single- and multi-fraction stereotactic radiosurgery are presented. Additional standardized dosimetric and toxicity reporting is needed to facilitate future pooled analyses and better define RION NTCP after SRS/fSRS.


Assuntos
Nervo Óptico/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Radiocirurgia/efeitos adversos , Adenoma/radioterapia , Cegueira/etiologia , Seio Cavernoso , Craniofaringioma/radioterapia , Humanos , Dose Máxima Tolerável , Neoplasias Meníngeas/radioterapia , Meningioma/radioterapia , Modelos Biológicos , Modelos Teóricos , Quiasma Óptico/efeitos da radiação , Neoplasias Hipofisárias/radioterapia , Hipofracionamento da Dose de Radiação , Tolerância a Radiação , Radiocirurgia/métodos , Dosagem Radioterapêutica , Reirradiação , Neoplasias da Base do Crânio/radioterapia , Acuidade Visual/efeitos da radiação , Campos Visuais/efeitos da radiação
4.
Nat Cancer ; 2(7): 709-722, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35121948

RESUMO

Despite widespread adoption of electronic health records (EHRs), most hospitals are not ready to implement data science research in the clinical pipelines. Here, we develop MEDomics, a continuously learning infrastructure through which multimodal health data are systematically organized and data quality is assessed with the goal of applying artificial intelligence for individual prognosis. Using this framework, currently composed of thousands of individuals with cancer and millions of data points over a decade of data recording, we demonstrate prognostic utility of this framework in oncology. As proof of concept, we report an analysis using this infrastructure, which identified the Framingham risk score to be robustly associated with mortality among individuals with early-stage and advanced-stage cancer, a potentially actionable finding from a real-world cohort of individuals with cancer. Finally, we show how natural language processing (NLP) of medical notes could be used to continuously update estimates of prognosis as a given individual's disease course unfolds.


Assuntos
Registros Eletrônicos de Saúde , Neoplasias , Inteligência Artificial , Confiabilidade dos Dados , Humanos , Processamento de Linguagem Natural , Neoplasias/diagnóstico
5.
Front Oncol ; 10: 602607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330102

RESUMO

PURPOSE: To assess stereotactic radiotherapy (SRT)/stereotactic body radiotherapy (SBRT) practices by polling clinics participating in multi-institutional clinical trials. METHODS: The NRG Oncology Medical Physics Subcommittee distributed a survey consisting of 23 questions, which covered general technologies, policies, and procedures used in the Radiation Oncology field for the delivery of SRT/SBRT (9 questions), and site-specific questions for brain SRT, lung SBRT, and prostate SBRT (14 questions). Surveys were distributed to 1,996 radiotherapy institutions included on the membership rosters of the five National Clinical Trials Network (NCTN) groups. Patient setup, motion management, target localization, prescriptions, and treatment delivery technique data were reported back by 568 institutions (28%). RESULTS: 97.5% of respondents treat lung SBRT patients, 77.0% perform brain SRT, and 29.1% deliver prostate SBRT. 48.8% of clinics require a physicist present for every fraction of SBRT, 18.5% require a physicist present for the initial SBRT fraction only, and 14.9% require a physicist present for the entire first fraction, including set-up approval for all subsequent fractions. 55.3% require physician approval for all fractions, and 86.7% do not reposition without x-ray imaging. For brain SRT, most institutions (83.9%) use a planning target volume (PTV) margin of 2 mm or less. Lung SBRT PTV margins of 3 mm or more are used in 80.6% of clinics. Volumetric modulated arc therapy (VMAT) is the dominant delivery method in 62.8% of SRT treatments, 70.9% of lung SBRT, and 68.3% of prostate SBRT. CONCLUSION: This report characterizes SRT/SBRT practices in radiotherapy clinics participating in clinical trials. Data made available here allows the radiotherapy community to compare their practice with that of other clinics, determine what is achievable, and assess areas for improvement.

6.
Sci Rep ; 10(1): 11073, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632116

RESUMO

Deep learning algorithms have recently been developed that utilize patient anatomy and raw imaging information to predict radiation dose, as a means to increase treatment planning efficiency and improve radiotherapy plan quality. Current state-of-the-art techniques rely on convolutional neural networks (CNNs) that use pixel-to-pixel loss to update network parameters. However, stereotactic body radiotherapy (SBRT) dose is often heterogeneous, making it difficult to model using pixel-level loss. Generative adversarial networks (GANs) utilize adversarial learning that incorporates image-level loss and is better suited to learn from heterogeneous labels. However, GANs are difficult to train and rely on compromised architectures to facilitate convergence. This study suggests an attention-gated generative adversarial network (DoseGAN) to improve learning, increase model complexity, and reduce network redundancy by focusing on relevant anatomy. DoseGAN was compared to alternative state-of-the-art dose prediction algorithms using heterogeneity index, conformity index, and various dosimetric parameters. All algorithms were trained, validated, and tested using 141 prostate SBRT patients. DoseGAN was able to predict more realistic volumetric dosimetry compared to all other algorithms and achieved statistically significant improvement compared to all alternative algorithms for the V100 and V120 of the PTV, V60 of the rectum, and heterogeneity index.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/radioterapia , Redes Neurais de Computação , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radiometria , Dosagem Radioterapêutica
7.
Radiol Artif Intell ; 2(2): e190027, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33937817

RESUMO

PURPOSE: To suggest an attention-aware, cycle-consistent generative adversarial network (A-CycleGAN) enhanced with variational autoencoding (VAE) as a superior alternative to current state-of-the-art MR-to-CT image translation methods. MATERIALS AND METHODS: An attention-gating mechanism is incorporated into a discriminator network to encourage a more parsimonious use of network parameters, whereas VAE enhancement enables deeper discrimination architectures without inhibiting model convergence. Findings from 60 patients with head, neck, and brain cancer were used to train and validate A-CycleGAN, and findings from 30 patients were used for the holdout test set and were used to report final evaluation metric results using mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). RESULTS: A-CycleGAN achieved superior results compared with U-Net, a generative adversarial network (GAN), and a cycle-consistent GAN. The A-CycleGAN averages, 95% confidence intervals (CIs), and Wilcoxon signed-rank two-sided test statistics are shown for MAE (19.61 [95% CI: 18.83, 20.39], P = .0104), structure similarity index metric (0.778 [95% CI: 0.758, 0.798], P = .0495), and PSNR (62.35 [95% CI: 61.80, 62.90], P = .0571). CONCLUSION: A-CycleGANs were a superior alternative to state-of-the-art MR-to-CT image translation methods.© RSNA, 2020.

8.
Neurooncol Adv ; 1(1): vdz011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608329

RESUMO

BACKGROUND: We investigated prognostic models based on clinical, radiologic, and radiomic feature to preoperatively identify meningiomas at risk for poor outcomes. METHODS: Retrospective review was performed for 303 patients who underwent resection of 314 meningiomas (57% World Health Organization grade I, 35% grade II, and 8% grade III) at two independent institutions, which comprised primary and external datasets. For each patient in the primary dataset, 16 radiologic and 172 radiomic features were extracted from preoperative magnetic resonance images, and prognostic features for grade, local failure (LF) or overall survival (OS) were identified using the Kaplan-Meier method, log-rank tests and recursive partitioning analysis. Regressions and random forests were used to generate and test prognostic models, which were validated using the external dataset. RESULTS: Multivariate analysis revealed that apparent diffusion coefficient hypointensity (HR 5.56, 95% CI 2.01-16.7, P = .002) was associated with high grade meningioma, and low sphericity was associated both with increased LF (HR 2.0, 95% CI 1.1-3.5, P = .02) and worse OS (HR 2.94, 95% CI 1.47-5.56, P = .002). Both radiologic and radiomic predictors of adverse meningioma outcomes were significantly associated with molecular markers of aggressive meningioma biology, such as somatic mutation burden, DNA methylation status, and FOXM1 expression. Integrated prognostic models combining clinical, radiologic, and radiomic features demonstrated improved accuracy for meningioma grade, LF, and OS (area under the curve 0.78, 0.75, and 0.78, respectively) compared to models based on clinical features alone. CONCLUSIONS: Preoperative radiologic and radiomic features such as apparent diffusion coefficient and sphericity can predict tumor grade, LF, and OS in patients with meningioma.

9.
Phys Med Biol ; 64(13): 135001, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31181561

RESUMO

A deeply supervised attention-enabled boosted convolutional neural network (DAB-CNN) is presented as a superior alternative to current state-of-the-art convolutional neural networks (CNNs) for semantic CT segmentation. Spatial attention gates (AGs) were incorporated into a novel 3D cascaded CNN framework to prioritize relevant anatomy and suppress redundancies within the network. Due to the complexity and size of the network, incremental channel boosting was used to decrease memory usage and facilitate model convergence. Deep supervision was used to encourage semantically meaningful deep features and mitigate local minima traps during training. The accuracy of DAB-CNN is compared to seven architectures: a variation of U-Net (UNet), attention-enabled U-Net (A-UNet), boosted U-Net (B-UNet), deeply-supervised U-Net (D-UNet), U-Net with ResNeXt blocks (ResNeXt), life-long learning segmentation CNN (LL-CNN), and deeply supervised attention-enabled U-Net (DA-UNet). The accuracy of each method was assessed based on Dice score compared to manually delineated contours as the gold standard. One hundred and twenty patients who had definitive prostate radiotherapy were used in this study. Training, validation, and testing followed Kaggle competition rules, with 80 patients used for training, 20 patients used for internal validation, and 20 test patients used to report final accuracies. Comparator p -values indicate that DAB-CNN achieved significantly superior Dice scores than all alternative algorithms for the prostate, rectum, and penile bulb. This study demonstrated that attention-enabled boosted convolutional neural networks (CNNs) using deep supervision are capable of achieving superior prediction accuracy compared to current state-of-the-art automatic segmentation methods.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Masculino , Neoplasias da Próstata/radioterapia
10.
Radiother Oncol ; 133: 106-112, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30935565

RESUMO

BACKGROUND AND PURPOSE: Radiation pneumonitis (RP) is a radiotherapy dose-limiting toxicity for locally advanced non-small cell lung cancer (LA-NSCLC). Prior studies have proposed relevant dosimetric constraints to limit this toxicity. Using machine learning algorithms, we performed analyses of contributing factors in the development of RP to uncover previously unidentified criteria and elucidate the relative importance of individual factors. MATERIALS AND METHODS: We evaluated 32 clinical features per patient in a cohort of 203 stage II-III LA-NSCLC patients treated with definitive chemoradiation to a median dose of 66.6 Gy in 1.8 Gy daily fractions at our institution from 2008 to 2016. Of this cohort, 17.7% of patients developed grade ≥2 RP. Univariate analysis was performed using trained decision stumps to individually analyze statistically significant predictors of RP and perform feature selection. Applying Random Forest, we performed multivariate analysis to assess the combined performance of important predictors of RP. RESULTS: On univariate analysis, lung V20, lung mean, lung V10 and lung V5 were found to be significant RP predictors with the greatest balance of specificity and sensitivity. On multivariate analysis, Random Forest (AUC = 0.66, p = 0.0005) identified esophagus max (20.5%), lung V20 (16.4%), lung mean (15.7%) and pack-year (14.9%) as the most common primary differentiators of RP. CONCLUSIONS: We highlight Random Forest as an accurate machine learning method to identify known and new predictors of symptomatic RP. Furthermore, this analysis confirms the importance of lung V20, lung mean and pack-year as predictors of RP while also introducing esophagus max as an important RP predictor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Aprendizado de Máquina , Pneumonite por Radiação/etiologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Quimiorradioterapia , Feminino , Humanos , Pulmão/fisiologia , Pulmão/efeitos da radiação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Dosagem Radioterapêutica
11.
Med Phys ; 46(5): 2204-2213, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30887523

RESUMO

PURPOSE: This study suggests a lifelong learning-based convolutional neural network (LL-CNN) algorithm as a superior alternative to single-task learning approaches for automatic segmentation of head and neck (OARs) organs at risk. METHODS AND MATERIALS: Lifelong learning-based convolutional neural network was trained on twelve head and neck OARs simultaneously using a multitask learning framework. Once the weights of the shared network were established, the final multitask convolutional layer was replaced by a single-task convolutional layer. The single-task transfer learning network was trained on each OAR separately with early stoppage. The accuracy of LL-CNN was assessed based on Dice score and root-mean-square error (RMSE) compared to manually delineated contours set as the gold standard. LL-CNN was compared with 2D-UNet, 3D-UNet, a single-task CNN (ST-CNN), and a pure multitask CNN (MT-CNN). Training, validation, and testing followed Kaggle competition rules, where 160 patients were used for training, 20 were used for internal validation, and 20 in a separate test set were used to report final prediction accuracies. RESULTS: On average contours generated with LL-CNN had higher Dice coefficients and lower RMSE than 2D-UNet, 3D-Unet, ST- CNN, and MT-CNN. LL-CNN required ~72 hrs to train using a distributed learning framework on 2 Nvidia 1080Ti graphics processing units. LL-CNN required 20 s to predict all 12 OARs, which was approximately as fast as the fastest alternative methods with the exception of MT-CNN. CONCLUSIONS: This study demonstrated that for head and neck organs at risk, LL-CNN achieves a prediction accuracy superior to all alternative algorithms.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Automação , Humanos , Órgãos em Risco/efeitos da radiação , Radioterapia Guiada por Imagem , Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
12.
Oral Oncol ; 87: 111-116, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30527225

RESUMO

Artificial intelligence (AI) is beginning to transform IMRT treatment planning for head and neck patients. However, the complexity and novelty of AI algorithms make them susceptible to misuse by researchers and clinicians. Understanding nuances of new technologies could serve to mitigate potential clinical implementation pitfalls. This article is intended to facilitate integration of AI into the radiotherapy clinic by providing an overview of AI algorithms, including support vector machines (SVMs), random forests (RF), gradient boosting (GB), and several variations of deep learning. This document describes current AI algorithms that have been applied to head and neck IMRT planning and identifies rapidly growing branches of AI in industry that have potential applications to head and neck cancer patients receiving IMRT. AI algorithms have great clinical potential if used correctly but can also cause harm if misused, so it is important to raise the level of AI competence within radiation oncology so that the benefits can be realized in a controlled and safe manner.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Aprendizado de Máquina , Lesões por Radiação/prevenção & controle , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Competência Clínica , Tomada de Decisão Clínica/métodos , Humanos , Lesões por Radiação/etiologia , Radio-Oncologistas , Planejamento da Radioterapia Assistida por Computador/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos
13.
Phys Med Biol ; 63(23): 235022, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511663

RESUMO

The goal of this study is to demonstrate the feasibility of a novel fully-convolutional volumetric dose prediction neural network (DoseNet) and test its performance on a cohort of prostate stereotactic body radiotherapy (SBRT) patients. DoseNet is suggested as a superior alternative to U-Net and fully connected distance map-based neural networks for non-coplanar SBRT prostate dose prediction. DoseNet utilizes 3D convolutional downsampling with corresponding 3D deconvolutional upsampling to preserve memory while simultaneously increasing the receptive field of the network. DoseNet was implemented on 2 Nvidia 1080 Ti graphics processing units and utilizes a 3 phase learning protocol to help achieve convergence and improve generalization. DoseNet was trained, validated, and tested with 151 patients following Kaggle completion rules. The dosimetric quality of DoseNet was evaluated by comparing the predicted dose distribution with the clinically approved delivered dose distribution in terms of conformity index, heterogeneity index, and various clinically relevant dosimetric parameters. The results indicate that the DoseNet algorithm is a superior alternative to U-Net and fully connected methods for prostate SBRT patients. DoseNet required ~50.1 h to train, and ~0.83 s to make a prediction on a 128 × 128 × 64 voxel image. In conclusion, DoseNet is capable of making accurate volumetric dose predictions for non-coplanar SBRT prostate patients, while simultaneously preserving computational efficiency.


Assuntos
Redes Neurais de Computação , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Dosagem Radioterapêutica
14.
JAMA Oncol ; 4(12): 1742-1748, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347008

RESUMO

Importance: Radiation dermatitis is common and often treated with topical therapy. Patients are typically advised to avoid topical agents for several hours before daily radiotherapy (RT) out of concern that topical agents might increase the radiation dose to the skin. With modern RT's improved skin-sparing properties, this recommendation may be irrelevant. Objective: To assess whether applying either metallic or nonmetallic topical agents before radiation treatment alters the skin dose. Design, Setting, and Participants: A 24-question online survey of patients and clinicians was conducted from January 15, 2015, to March 15, 2017, to determine current practices regarding topical therapy use. In preclinical studies, dosimetric effect of the topical agents was evaluated by delivering 200 monitor units and measuring the dose at the surface and at 2-cm depth in a tissue-equivalent phantom with or without 2 common topical agents: a petroleum-based ointment (Aquaphor, petrolatum 41%) and silver sulfadiazine cream, 1%. Skin doses associated with various photon and electron energies, topical agent thicknesses, and beam incidence were assessed. Whether topical agents altered the skin dose was also evaluated in 24 C57BL/6 mice by using phosphorylated histone (γ-H2AX) immunofluorescent staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Preclinical studies took place at the University of Pennsylvania. Main Outcomes and Measures: Patient and clinician survey responses; surface radiation dose readings in tissue-equivalent phantom; and γ-H2AX and TUNEL intensity measured in mice. Results: The 133 patients surveyed received RT for cancer and had a median (range) age of 60 (18-86) years; 117 (87.9%) were women. One hundred eight clinicians completed the survey with 105 reporting that they were involved in managing patient skin care during RT. One hundred eleven (83.4%) of the patients and 96 (91.4%) of the 105 clinicians received or gave the advice to avoid applying topical agents before RT treatments. Dosimetric measurements showed no difference in the delivered dose at either the surface or a 2-cm depth with or without a 1- to 2-mm application of either topical agent when using en face 6- or 15-megavoltage (MV) photons. The same application of topicals did not alter the surface dose as a function of beam incident angle from 15° to 60°, except for a 6% increase at 60° with the silver sulfadiazine cream. Surface dose for 6- and 15-MV beams were significantly increased with a thicker (≥3-mm) topical application. For 6 MV, the surface dose was 1.05 Gy with a thick layer of petroleum-based ointment and 1.02 Gy for silver sulfadiazine cream vs 0.88 Gy without topical agents. For 15 MV, the doses were 0.70 Gy for a thick layer of petroleum-based ointment and 0.60 Gy for silver sulfadiazine cream vs 0.52 Gy for the controls. With 6- and 9-MeV electrons, there was a 2% to 5% increase in surface dose with the use of the topical agents. There were no dose differences at 2-cm depth. Irradiated skin in mice showed no differences in γ-H2AX-positive foci or in TUNEL staining with or without topical agents of varying thickness. Conclusions and Relevance: Thin or moderately applied topical agents, even if applied just before RT, may have minimal influence on skin dose regardless of beam energy or beam incidence. The findings of this study suggest that applying very thick amounts of a topical agent before RT may increase the surface dose and should be avoided.


Assuntos
Contraindicações de Medicamentos , Fármacos Dermatológicos , Aconselhamento Diretivo , Relações Médico-Paciente , Lesões por Radiação/prevenção & controle , Radioterapia/efeitos adversos , Administração Tópica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Atitude Frente a Saúde , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/efeitos adversos , Aconselhamento Diretivo/métodos , Aconselhamento Diretivo/normas , Fracionamento da Dose de Radiação , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Imagens de Fantasmas , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Inquéritos e Questionários , Adulto Jovem
15.
PLoS One ; 13(9): e0204161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235308

RESUMO

BACKGROUND: Meningiomas are stratified according to tumor grade and extent of resection, often in isolation of other clinical variables. Here, we use machine learning (ML) to integrate demographic, clinical, radiographic and pathologic data to develop predictive models for meningioma outcomes. METHODS AND FINDINGS: We developed a comprehensive database containing information from 235 patients who underwent surgery for 257 meningiomas at a single institution from 1990 to 2015. The median follow-up was 4.3 years, and resection specimens were re-evaluated according to current diagnostic criteria, revealing 128 WHO grade I, 104 grade II and 25 grade III meningiomas. A series of ML algorithms were trained and tuned by nested resampling to create models based on preoperative features, conventional postoperative features, or both. We compared different algorithms' accuracy as well as the unique insights they offered into the data. Machine learning models restricted to preoperative information, such as patient demographics and radiographic features, had similar accuracy for predicting local failure (AUC = 0.74) or overall survival (AUC = 0.68) as models based on meningioma grade and extent of resection (AUC = 0.73 and AUC = 0.72, respectively). Integrated models incorporating all available demographic, clinical, radiographic and pathologic data provided the most accurate estimates (AUC = 0.78 and AUC = 0.74, respectively). From these models, we developed decision trees and nomograms to estimate the risks of local failure or overall survival for meningioma patients. CONCLUSIONS: Clinical information has been historically underutilized in the prediction of meningioma outcomes. Predictive models trained on preoperative clinical data perform comparably to conventional models trained on meningioma grade and extent of resection. Combination of all available information can help stratify meningioma patients more accurately.


Assuntos
Meningioma/cirurgia , Cuidados Pós-Operatórios , Cuidados Pré-Operatórios , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Análise por Conglomerados , Árvores de Decisões , Humanos , Aprendizado de Máquina , Pessoa de Meia-Idade , Nomogramas , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
16.
Int J Radiat Oncol Biol Phys ; 102(4): 1074-1082, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30170101

RESUMO

The adoption of enterprise digital imaging, along with the development of quantitative imaging methods and the re-emergence of statistical learning, has opened the opportunity for more personalized cancer treatments through transformative data science research. In the last 5 years, accumulating evidence has indicated that noninvasive advanced imaging analytics (i.e., radiomics) can reveal key components of tumor phenotype for multiple lesions at multiple time points over the course of treatment. Many groups using homegrown software have extracted engineered and deep quantitative features on 3-dimensional medical images for better spatial and longitudinal understanding of tumor biology and for the prediction of diverse outcomes. These developments could augment patient stratification and prognostication, buttressing emerging targeted therapeutic approaches. Unfortunately, the rapid growth in popularity of this immature scientific discipline has resulted in many early publications that miss key information or use underpowered patient data sets, without production of generalizable results. Quantitative imaging research is complex, and key principles should be followed to realize its full potential. The fields of quantitative imaging and radiomics in particular require a renewed focus on optimal study design and reporting practices, standardization, interpretability, data sharing, and clinical trials. Standardization of image acquisition, feature calculation, and statistical analysis (i.e., machine learning) are required for the field to move forward. A new data-sharing paradigm enacted among open and diverse participants (medical institutions, vendors and associations) should be embraced for faster development and comprehensive clinical validation of imaging biomarkers. In this review and critique of the field, we propose working principles and fundamental changes to the current scientific approach, with the goal of high-impact research and development of actionable prediction models that will yield more meaningful applications of precision cancer medicine.


Assuntos
Diagnóstico por Imagem/métodos , Neoplasias/diagnóstico por imagem , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Disseminação de Informação
17.
Int J Radiat Oncol Biol Phys ; 102(4): 744-756, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30108003

RESUMO

PURPOSE: To investigate the prognostic utility of quantitative 3-dimensional magnetic resonance imaging radiomic analysis for primary pediatric embryonal brain tumors. METHODS AND MATERIALS: Thirty-four pediatric patients with embryonal brain tumor with concurrent preoperative T1-weighted postcontrast (T1PG) and T2-weighted fluid-attenuated inversion recovery (FLAIR) magnetic resonance images were identified from an institutional database. The median follow-up period was 5.2 years. Radiomic features were extracted from axial T1PG and FLAIR contours using MATLAB, and 15 features were selected for analysis based on qualitative radiographic features with prognostic significance for pediatric embryonal brain tumors. Logistic regression, linear regression, receiver operating characteristic curves, the Harrell C index, and the Somer D index were used to test the relationships between radiomic features and demographic variables, as well as clinical outcomes. RESULTS: Pediatric embryonal brain tumors in older patients had an increased normalized mean tumor intensity (P = .05, T1PG), decreased tumor volume (P = .02, T1PG), and increased markers of heterogeneity (P ≤ .01, T1PG and FLAIR) relative to those in younger patients. We identified 10 quantitative radiomic features that delineated medulloblastoma, pineoblastoma, and supratentorial primitive neuroectodermal tumor, including size and heterogeneity (P ≤ .05, T1PG and FLAIR). Decreased markers of tumor heterogeneity were predictive of neuraxis metastases and trended toward significance (P = .1, FLAIR). Tumors with an increased size (area under the curve = 0.7, FLAIR) and decreased heterogeneity (area under the curve = 0.7, FLAIR) at diagnosis were more likely to recur. CONCLUSIONS: Quantitative radiomic features are associated with pediatric embryonal brain tumor patient age, histology, neuraxis metastases, and recurrence. These data suggest that quantitative 3-dimensional magnetic resonance imaging radiomic analysis has the potential to identify radiomic risk features for pediatric patients with embryonal brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Embrionárias de Células Germinativas/diagnóstico por imagem , Adolescente , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/patologia , Metástase Neoplásica , Recidiva Local de Neoplasia , Neoplasias Embrionárias de Células Germinativas/mortalidade , Neoplasias Embrionárias de Células Germinativas/patologia , Tumores Neuroectodérmicos Primitivos/diagnóstico por imagem , Tumores Neuroectodérmicos Primitivos/patologia , Pinealoma/diagnóstico por imagem , Pinealoma/patologia , Estudos Retrospectivos
18.
Phys Med Biol ; 63(18): 185017, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30109996

RESUMO

The purpose of the work is to develop a deep unsupervised learning strategy for cone-beam CT (CBCT) to CT deformable image registration (DIR). This technique uses a deep convolutional inverse graphics network (DCIGN) based DIR algorithm implemented on 2 Nvidia 1080 Ti graphics processing units. The model is comprised of an encoding and decoding stage. The fully-convolutional encoding stage learns hierarchical features and simultaneously forms an information bottleneck, while the decoding stage restores the original dimensionality of the input image. Activations from the encoding stage are used as the input channels to a sparse DIR algorithm. DCIGN was trained using a distributive learning-based convolutional neural network architecture and used 285 head and neck patients to train, validate, and test the algorithm. The accuracy of the DCIGN algorithm was evaluated on 100 synthetic cases and 12 hold out test patient cases. The results indicate that DCIGN performed better than rigid registration, intensity corrected Demons, and landmark-guided deformable image registration for all evaluation metrics. DCIGN required ~14 h to train, and ~3.5 s to make a prediction on a 512 × 512 × 120 voxel image. In conclusion, DCIGN is able to maintain high accuracy in the presence of CBCT noise contamination, while simultaneously preserving high computational efficiency.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Humanos
19.
J Appl Clin Med Phys ; 19(5): 558-572, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30058170

RESUMO

Monte Carlo (MC)-based dose calculations are generally superior to analytical dose calculations (ADC) in modeling the dose distribution for proton pencil beam scanning (PBS) treatments. The purpose of this paper is to present a methodology for commissioning and validating an accurate MC code for PBS utilizing a parameterized source model, including an implementation of a range shifter, that can independently check the ADC in commercial treatment planning system (TPS) and fast Monte Carlo dose calculation in opensource platform (MCsquare). The source model parameters (including beam size, angular divergence and energy spread) and protons per MU were extracted and tuned at the nozzle exit by comparing Tool for Particle Simulation (TOPAS) simulations with a series of commissioning measurements using scintillation screen/CCD camera detector and ionization chambers. The range shifter was simulated as an independent object with geometric and material information. The MC calculation platform was validated through comprehensive measurements of single spots, field size factors (FSF) and three-dimensional dose distributions of spread-out Bragg peaks (SOBPs), both without and with the range shifter. Differences in field size factors and absolute output at various depths of SOBPs between measurement and simulation were within 2.2%, with and without a range shifter, indicating an accurate source model. TOPAS was also validated against anthropomorphic lung phantom measurements. Comparison of dose distributions and DVHs for representative liver and lung cases between independent MC and analytical dose calculations from a commercial TPS further highlights the limitations of the ADC in situations of highly heterogeneous geometries. The fast MC platform has been implemented within our clinical practice to provide additional independent dose validation/QA of the commercial ADC for patient plans. Using the independent MC, we can more efficiently commission ADC by reducing the amount of measured data required for low dose "halo" modeling, especially when a range shifter is employed.


Assuntos
Terapia com Prótons , Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
20.
J Appl Clin Med Phys ; 19(5): 539-546, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29992732

RESUMO

BACKGROUND AND PURPOSE: Chest wall toxicity is observed after stereotactic body radiation therapy (SBRT) for peripherally located lung tumors. We utilize machine learning algorithms to identify toxicity predictors to develop dose-volume constraints. MATERIALS AND METHODS: Twenty-five patient, tumor, and dosimetric features were recorded for 197 consecutive patients with Stage I NSCLC treated with SBRT, 11 of whom (5.6%) developed CTCAEv4 grade ≥2 chest wall pain. Decision tree modeling was used to determine chest wall syndrome (CWS) thresholds for individual features. Significant features were determined using independent multivariate methods. These methods incorporate out-of-bag estimation using Random forests (RF) and bootstrapping (100 iterations) using decision trees. RESULTS: Univariate analysis identified rib dose to 1 cc < 4000 cGy (P = 0.01), chest wall dose to 30 cc < 1900 cGy (P = 0.035), rib Dmax < 5100 cGy (P = 0.05) and lung dose to 1000 cc < 70 cGy (P = 0.039) to be statistically significant thresholds for avoiding CWS. Subsequent multivariate analysis confirmed the importance of rib dose to 1 cc, chest wall dose to 30 cc, and rib Dmax. Using learning-curve experiments, the dataset proved to be self-consistent and provides a realistic model for CWS analysis. CONCLUSIONS: Using machine learning algorithms in this first of its kind study, we identify robust features and cutoffs predictive for the rare clinical event of CWS. Additional data in planned subsequent multicenter studies will help increase the accuracy of multivariate analysis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Aprendizado de Máquina , Atividades Cotidianas , Humanos , Radiocirurgia , Parede Torácica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA