Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 150: 108343, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36608371

RESUMO

Mapping of the metabolic activity of tumor tissues represents a fundamental approach to better identify the tumor type, elucidate metastatic mechanisms and support the development of targeted cancer therapies. The spatially resolved quantification of Warburg effect key metabolites, such as glucose and lactate, is essential. Miniaturized electrochemical biosensors scanned over cancer cells and tumor tissue to visualize the metabolic characteristics of a tumor is attractive but very challenging due to the limited oxygen availability in the hypoxic environments of tumors that impedes the reliable applicability of glucose oxidase-based glucose micro-biosensors. Herein, the development and application of a new glucose micro-biosensor is presented that can be reliably operated under hypoxic conditions. The micro-biosensor is fabricated in a one-step synthesis by entrapping during the electrochemically driven growth of a polymeric matrix on a platinum microelectrode glucose oxidase and a catalytically active Prussian blue type aggregate and mediator. The as-obtained functionalization improves significantly the sensitivity of the developed micro-biosensor for glucose detection under hypoxic conditions compared to normoxic conditions. By using the micro-biosensor as non-invasive sensing probe in Scanning Electrochemical Microscopy (SECM), the glucose uptake by a breast metastatic adenocarcinoma cell line, with an epithelial morphology, is measured.


Assuntos
Técnicas Biossensoriais , Glucose , Glucose Oxidase/química , Microscopia Eletroquímica de Varredura , Microeletrodos
2.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234629

RESUMO

Fullerenes are considered excellent photosensitizers, being highly suitable for photodynamic therapy (PDT). A lack of water solubility and low biocompatibility are, in many instances, still hampering the full exploitation of their potential in nanomedicine. Here, we used human serum albumin (HSA) to disperse fullerenes by binding up to five fullerene cages inside the hydrophobic cavities. Albumin was bioconjugated with folic acid to specifically address the folate receptors that are usually overexpressed in several solid tumors. Concurrently, tetramethylrhodamine isothiocyanate, TRITC, a tag for imaging, was conjugated to C60@HSA in order to build an effective phototheranostic platform. The in vitro experiments demonstrated that: (i) HSA disperses C60 molecules in a physiological environment, (ii) HSA, upon C60 binding, maintains its biological identity and biocompatibility, (iii) the C60@HSA complex shows a significant visible-light-induced production of reactive oxygen species, and (iv) folate bioconjugation improves both the internalization and the PDT-induced phototoxicity of the C60@HSA complex in HeLa cells.

3.
Commun Biol ; 5(1): 1070, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207490

RESUMO

Multivalent protein interactors are an attractive modality for probing protein function and exploring novel pharmaceutical strategies. The throughput and precision of state-of-the-art methodologies and workflows for the effective development of multivalent binders is currently limited by surface immobilization, fluorescent labelling and sample consumption. Using the gephyrin protein, the master regulator of the inhibitory synapse, as benchmark, we exemplify the application of Fluorescence proximity sensing (FPS) for the systematic kinetic and thermodynamic optimization of multivalent peptide architectures. High throughput synthesis of +100 peptides with varying combinatorial dimeric, tetrameric, and octameric architectures combined with direct FPS measurements resolved on-rates, off-rates, and dissociation constants with high accuracy and low sample consumption compared to three complementary technologies. The dataset and its machine learning-based analysis deciphered the relationship of specific architectural features and binding kinetics and thereby identified binders with unprecedented protein inhibition capacity; thus, highlighting the value of FPS for the rational engineering of multivalent inhibitors.


Assuntos
Peptídeos , Fluorescência , Cinética , Preparações Farmacêuticas , Termodinâmica
4.
JACS Au ; 1(7): 925-935, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467339

RESUMO

The electronic, optical, and redox properties of thiophene-based materials have made them pivotal in nanoscience and nanotechnology. However, the exploitation of oligothiophenes in photodynamic therapy is hindered by their intrinsic hydrophobicity that lowers their biocompatibility and availability in water environments. Here, we developed human serum albumin (HSA)-oligothiophene bioconjugates that afford the use of insoluble oligothiophenes in physiological environments. UV-vis and electrophoresis proved the conjugation of the oligothiophene sensitizers to the protein. The bioconjugate is water-soluble and biocompatible, does not have any "dark toxicity", and preserves HSA in the physiological monomeric form, as confirmed by dynamic light scattering and circular dichroism measurements. In contrast, upon irradiation with ultralow light doses, the bioconjugate efficiently produces reactive oxygen species (ROS) and leads to the complete eradication of cancer cells. Real-time monitoring of the photokilling activity of the HSA-oligothiophene bioconjugate shows that living cells "explode" upon irradiation. Photodependent and dose-dependent apoptosis is one of the primary mechanisms of cell death activated by bioconjugate irradiation. The bioconjugate is a novel theranostic platform able to generate ROS intracellularly and provide imaging through the fluorescence of the oligothiophene. It is also a real-time self-reporting system able to monitor the apoptotic process. The induced phototoxicity is strongly confined to the irradiated region, showing localized killing of cancer cells by precise light activation of the bioconjugate.

5.
ACS Appl Bio Mater ; 3(3): 1514-1519, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021642

RESUMO

The native structure of the ß-chitin in the gladius (squid pen) of Loligo vulgaris squid can be used as a natural plaster to entrap and release a model drug, doxorubicin, in a targeted and controlled way. Local pH determines the protonation state of the doxorubicin molecules, controlling the two phenomena. Confocal microscopy shows that doxorubicin is uniformly embedded in the ß-chitin squid pen and is not simply adsorbed on its surface. Coculture with HeLa cells reveals that the ß-chitin squid pen plaster is perfectly biocompatible, while when it is loaded with doxorubicin it shows high cytotoxicity toward the cancer cells. The drug, once released, rapidly accumulates inside the cells. In conclusion, the native structure of a ß-chitin squid pen can be potentially applied as a "green" pH-responsive drug vehicle for controlled release.

6.
Bioconjug Chem ; 30(3): 808-814, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30616344

RESUMO

The lack of solubility in water and the formation of aggregates hamper many opportunities for technological exploitation of C60. Here, different peptides were designed and synthesized with the aim of monomolecular dispersion of C60 in water. Phenylalanines were used as recognizing moieties, able to interact with C60 through π-π stacking, while a varying number of glycines were used as spacers, to connect the two terminal phenylalanines. The best performance in the dispersion of C60 was obtained with the FGGGF peptidic nanotweezer at a pH of 12. A full characterization of this adduct was carried out. The peptides disperse C60 in water with high efficiency, and the solutions are stable for months both in pure water and in physiological environments. NMR measurements demonstrated the ability of the peptides to interact with C60. AFM measurements showed that C60 is monodispersed. Electrospray ionization mass spectrometry determined a stoichiometry of C60@(FGGGF)4. Molecular dynamics simulations showed that the peptides assemble around the C60 cage, like a candy in its paper wrapper, creating a supramolecular host able to accept C60 in the cavity. The peptide-wrapped C60 is fully biocompatible and the C60 "dark toxicity" is eliminated. C60@(FGGGF)4 shows visible light-induced reactive oxygen species (ROS) generation at physiological saline concentrations and reduction of the HeLa cell viability in response to visible light irradiation.


Assuntos
Materiais Biocompatíveis/química , Fulerenos/química , Peptídeos/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Espécies Reativas de Oxigênio/metabolismo , Água
7.
Nanomedicine (Lond) ; 7(7): 957-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22394186

RESUMO

AIMS: To develop an immunosensor for ultrasensitive detection of the NANOG protein. NANOG regulates pluripotency in stem cells and some cancer cells. This article reports the first electrochemical immunosensor for ultrasensitive detection and absolute quantification of the NANOG protein. The sensor features dense capture antibody-coated gold nanoparticle layers on a pyrolytic graphite underlayer. MATERIALS & METHODS: Two separate multilabel detection strategies were used to achieve moderate and ultra-high sensitivity. RESULTS: Good sensitivity was achieved for NANOG over the concentration range 0.1-160 pg/ml. The moderate-sensitivity approach gave a detection limit of 25 pg/ml, while the ultrasensitive method achieved a 250-fold lower detection limit of 0.1 pg/ml. Amounts of NANOG detected in human embryonic stem cell lysates correlated well with qualitative western blots and mRNA expression. CONCLUSION: The electrochemical gold nanoparticle immunosensor is suitable for measuring NANOG protein expression in stem and carcinoma cell tissue lysates at very low levels.


Assuntos
Técnicas Biossensoriais/métodos , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/análise , Imunoensaio/métodos , Nanopartículas Metálicas/química , Anticorpos Imobilizados/imunologia , Linhagem Celular , Técnicas Eletroquímicas/métodos , Ouro/química , Proteínas de Homeodomínio/imunologia , Humanos , Limite de Detecção , Proteína Homeobox Nanog
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA