Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 11(4)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340426

RESUMO

Aptamers are single-stranded oligonucleotides (ssDNA or ssRNA) that bind and recognize their targets with high affinity and specificity due to their complex tertiary structure. Aptamers are selected by a method called SELEX (Systematic Evolution of Ligands by EXponential enrichment). This method has allowed the selection of aptamers to different types of molecules. Since then, many aptamers have been described for the potential treatment of several diseases including cancer. It has been described over the last few years that aptamers represent a very useful tool as therapeutics, especially for cancer therapy. Aptamers, thanks to their intrinsic oligonucleotide nature, present inherent advantages over other molecules, such as cell-based products. Owing to their higher tissue penetrability, safer profile, and targeting capacity, aptamers are likely to become a novel platform for the delivery of many different types of therapeutic cargos. Here we focus the review on interfering RNAs (iRNAs) as aptamer-based targeting delivered agents. We have gathered the most reliable information on aptamers as targeting and carrier agents for the specific delivery of siRNAs, shRNA, microRNAs, and antisense oligonucleotides (ASOs) published in the last few years in the context of cancer therapy.

2.
Oncoimmunology ; 7(8): e1450711, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30221041

RESUMO

In spite of the success of PD-1 blocking antibodies in the clinic their benefits are still restricted to a small fraction of patients. Immune-desert tumors and/or the highly immunosuppressive tumor milieu might hamper the success of PD-1/PD-L1 blocking therapies into a broader range of cancer patients. Although still under debate, there is a cumulative body of evidence that indicates B tumor-infiltrating lymphocytes are a good prognostic marker in most types of cancer, especially in those that form ectopic lymphoid tissue structures. Taking this into account, we reason that the adoptive transfer of activated B lymphoblasts (ABL) in the tumor could be a feasible therapeutic approach to shift the immunosuppressive tumor microenvironment into an immune-permissive one. In this work we show the antitumor effect of ABL therapy in two different tumor models: colon carcinoma (CT26) and melanoma (B16/F10). The ABL transfer in the most relevant non-immunogenic B16/F10 melanoma model depicts synergism with anti-PD-1 antibody therapy. Furthermore, systemic antitumor immunity was detected in mice treated with PD-1 antibody/ABL combination which was able to reach distal metastatic lesions.

4.
Oncotarget ; 7(4): 4522-30, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26683225

RESUMO

TIM3 belongs to a family of receptors that are involved in T-cell exhaustion and Treg functions. The development of new therapeutic agents to block this type of receptors is opening a new avenue in cancer immunotherapy. There are currently several clinical trials ongoing to combine different immune-checkpoint blockades to improve the outcome of cancer patients. Among these combinations we should underline PD1:PDL1 axis and TIM3 blockade, which have shown very promising results in preclinical settings. Most of these types of therapeutic agents are protein cell-derived products, which, although broadly used in clinical settings, are still subject to important limitations. In this work we identify by HT-SELEX TIM3 non-antigenic oligonucleotide aptamers (TIM3Apt) that bind with high affinity and specificity to the extracellular motives of TIM3 on the cell surface. The TIM3Apt1 in its monomeric form displays a potent antagonist capacity on TIM3-expressing lymphocytes, determining the increase of IFN-γ secretion. In colon carcinoma tumor-bearing mice, the combinatorial treatment of TIM3Apt1 and PDL1-antibody blockade is synergistic with a remarkable antitumor effect. Immunotherapeutic aptamers could represent an attractive alternative to monoclonal antibodies, as they exhibit important advantages; namely, lower antigenicity, being chemically synthesized agents with a lower price of manufacture, providing higher malleability, and antidote availability.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Imunoterapia , Melanoma/terapia , Oligonucleotídeos Antissenso/farmacologia , Técnica de Seleção de Aptâmeros/métodos , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Citometria de Fluxo , Humanos , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Quinases , Linfócitos T Reguladores/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Ther Nucleic Acids ; 2: e98, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23756353

RESUMO

CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7), precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist) to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.Molecular Therapy - Nucleic Acids (2013) 2, e98; doi:10.1038/mtna.2013.26; published online 11 June 2013.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA