Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458296

RESUMO

In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.


Assuntos
Quitosana , Ácidos Cumáricos , Nanopartículas , Glicerol/química , Quitosana/química , Polímeros/química , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
2.
J Cell Biochem ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284235

RESUMO

Human transmembrane serine protease 2 (TMPRSS2) is an important member of the type 2 transmembrane serine protease (TTSP) family with significant therapeutic markings. The search for potent TMPRSS2 inhibitors against severe acute respiratory syndrome coronavirus 2 infection with favorable tissue specificity and off-site toxicity profiles remains limited. Therefore, probing the anti-TMPRSS2 potential of enhanced drug delivery systems, such as nanotechnology and prodrug systems, has become compelling. We report the first in silico study of TMPRSS2 against a prodrug, [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] also known as DRP-104 synthesized from 6-Diazo-5-oxo-l-norleucine (DON). We performed comparative studies on DON and DRP-104 against a clinically potent TMPRSS2 inhibitor, nafamostat, and a standard serine protease inhibitor, 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF) against TMPRSS2 and found improved TMPRSS2 inhibition through synergistic binding of the S1/S1' subdomains. Both DON and DRP-104 had better thermodynamic profiles than AEBSF and nafamostat. DON was found to confer structural stability with strong positive correlated inter-residue motions, whereas DRP-104 was found to confer kinetic stability with restricted residue displacements and reduced loop flexibility. Interestingly, the Scavenger Receptor Cysteine-Rich (SRCR) domain of TMPRSS2 may be involved in its inhibition mechanics. Two previously unidentified loops, designated X (270-275) and Y (293-296) underwent minimal and major structural transitions, respectively. In addition, residues 273-277 consistently transitioned to a turn conformation in all ligated systems, whereas unique transitions were identified for other transitioning residue groups in each TMPRSS2-inhibitor complex. Intriguingly, while both DON and DRP-104 showed similar loop transition patterns, DRP-104 preserved loop structural integrity. As evident from our systematic comparative study using experimentally/clinically validated inhibitors, DRP-104 may serve as a potent and novel TMPRSS2 inhibitor and warrants further clinical investigation.

3.
J Colloid Interface Sci ; 659: 503-519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184993

RESUMO

The adsorption of proteins onto the surface of nanoparticle (NP) leads to the formation of the so-called "protein corona" as consisting both loosely and tightly bound proteins. It is well established that the biological identity of NPs that may be acquired after exposure to a biological matrix is mostly provided by the components of the hard corona as the pristine surface is generally less accessible for binding. For that reason, the isolation and the characterisation of the NP-corona complexes and identification of the associated biomolecules can help in understanding its biological behaviour. Established methods for the isolation of the NP-HC complexes are time-demanding and can lead to different results based on the isolation method applied. Herein, we have developed a fast and simple method using ferromagnetic beads isolated from commercial MACS column and used for the isolation of superparamagnetic NP following exposure to different types of biological milieu. We first demonstrated the ability to easily isolate superparamagnetic iron oxide NPs (IONPs) from different concentrations of human blood plasma, and also tested the method on the corona isolation using more complex biological matrices, such as culture medium containing pulmonary mucus where the ordinary corona methods cannot be applied. Our developed method showed less than 20% difference in plasma corona composition when compared with centrifugation. It also showed effective isolation of NP-HC complexes from mucus-containing culture media upon comparing with centrifugation and MACS columns, which failed to wash out the unbound proteins. Our study was supported with a full characterisation profile including dynamic light scattering, nanoparticle tracking analysis, analytical disk centrifuge, and zeta potentials. The biomolecules/ proteins composing the HC were separated by vertical gel electrophoresis and subsequently analysed by liquid chromatography-tandem mass spectrometry. In addition to our achievements in comparing different isolation methods to separate IONPs with corona from human plasma, this is the first study that provides a complete characterisation profile of particle protein corona after exposure in vitro to pulmonary mucus-containing culture media.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Coroa de Proteína/química , Proteínas/química , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Meios de Cultura
4.
J Biomol Struct Dyn ; : 1-24, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909584

RESUMO

The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.

5.
Indian J Microbiol ; 63(4): 621-631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38034904

RESUMO

Essential oils have proven to possess great potential in the field of biomedicine due to their ability to effectively eradicate a diverse range of pathogenic microbes. In this study, the antimicrobial activity of ylang-ylang essential oil (YY-EO) was screened against twelve multidrug-resistant pathogens. The YY-EO was effective up to 536 µg/ml, with the highest inhibition zone in case of S. aureus MMCC21 and Escherichia coli MMCC24. The least effect on both Bacillus cereus MMCC11 and Klebsiella pneumonia MMCC16. The major components of the essential oil were identified using GC-MS analysis. Different gamma irradiation doses against the YY-EO were evaluated as a tool of natural decontamination. Moreover, the antimicrobial assay after irradiation proved no significant changes regarding the antimicrobial activity before and after irradiation of EO at the applied dose. The minimum inhibitory concentration (MIC) for the EO against the tested pathogens was detected. The possible morphological changes in some of the bacterial and yeast cells at the recognized MIC and 2MIC were detected using the scanning electron microscope (SEM). Results revealed a notable change in terms of both the microbial cell population and the morphology of the tested bacterial and yeast cells. The cytotoxicity of ylang-ylang EO was evaluated against normal skin tissue culture and showed a potential cytotoxic effect at concentrated doses. These results refer to the importance of YY-EO as a natural antimicrobial agent and the possible application of YY-EO as a surface decontaminant, but they also draw attention to the importance of the EO concentration used in different applications to avoid possible toxic effects. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01122-4.

6.
Arch Ital Urol Androl ; 95(3): 11580, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37791555

RESUMO

OBJECTIVES: Varicocele is the most common correctable cause of male infertility that always has been a debatable subject as regards how it affects fertility and the best way to treat it. Proper assessment of the disease bilaterality is crucial not to miss one side and not to jeopardize treatment outcome. This study aimed to objectively assess varicocele bilaterality in infertile men aiming to improve treatment outcome in this cohort of patients. METHODS: This prospective study was conducted between January 2019 and January 2022 including infertile males with varicoceles. Assessment of missed concomitant contralateral varicocele done pre-operatively by Color Doppler Ultrasound and intraoperatively by intraoperative Doppler device and measurement of maximal vein diameter of contralateral side. RESULTS: A total of 329 cases completed the study. A hundred cases (30.4%) were initially referred as unilateral varicoceles and 229 (69.6%) as bilateral varicoceles. After reassessment of the study population, bilaterality of varicocele was found to be as high as 98.5% (324/329). Repeat CDUS strongly correlated with the intraoperative measured varicocele diameter (r = 0.9, p < 0.001). Moreover, sperm parameters showed significant improvement 3 and 6 months post varicocelectomy. Normal pregnancy after 1 year of surgery occurred in 118 cases (35.9%). CONCLUSIONS: Varicocele bilaterality in infertile men is underreported. Thorough assessment by expert radiologists and andrologists is of paramount importance not to miss significant pathology or hazard treatment outcome.


Assuntos
Infertilidade Masculina , Varicocele , Gravidez , Feminino , Humanos , Masculino , Varicocele/complicações , Varicocele/cirurgia , Varicocele/patologia , Estudos Prospectivos , Sêmen , Infertilidade Masculina/etiologia , Infertilidade Masculina/cirurgia , Resultado do Tratamento
7.
Future Med Chem ; 15(18): 1719-1738, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37772542

RESUMO

There has been an increasing trend in the design of novel pyrazole derivatives for desired biological applications. For a cost-effective strategy, scientists have implemented various computational drug design tools to go hand in hand with experiments for the design and discovery of potentially effective pyrazole-based therapeutics. This review highlights the milestones of pyrazole-containing inhibitors and the use of molecular modeling techniques in conjunction with experimental studies to provide a view of the binding mechanism of these compounds. The review focuses on the established targets that play a key role in cancer therapy, including proteins involved in tubulin polymerization, carbonic anhydrase and tyrosine kinase. Overall, using both experimental and computational methods in drug design represents a promising approach to cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Modelos Moleculares , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirazóis/química , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
8.
Artigo em Inglês | MEDLINE | ID: mdl-37581526

RESUMO

BACKGROUND: Blocking the oncogenic Wnt//ß-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; tankyrase 2 (TNKS2), protein kinase B (AKT), and cyclin-dependent kinase 9 (CDK9), which propagate the oncogenic Wnt/ß-catenin signalling pathway. METHODS: During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS: Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION: The following structural insights provide a starting point for understanding the pan-inhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37501771

RESUMO

Chronic stress is a risk factor for depression and is characterized by elevated levels of brain monoamine oxidase A (MAOA). Mounting evidence has shown that MAOA is a biochemical link between stress and depression. Apigenin (API), a natural flavonoid, as demonstrated in vitro inhibitory effect on MAOA, is suggestive of antidepressant-like activity. However, the in vivo inhibitory effect of API on MAOA and how it affects depression still remain unclear. Here, we report the probable mechanisms of action of API in chronic unpredictable mild stress (CUMS)-induced depression in mice. Treatment with API reversed anhedonia, and reduced anxiety and immobility time in behavioral studies. API reduced brain corticosterone and malondialdehyde (MDA) levels but increased brain levels of glutathione and superoxide dismutase. Furthermore, interleukin-6 and tumor necrosis factor-α were attenuated by API. It also restored cell loss and inhibited the activity of MAOA in the hippocampal brain regions and prefrontal cortex. Comparative binding affinity of API for MAOA (-7.7 kcal/mol) through molecular docking studies was greater than that of reference compound, clorgyline (-6.8 kcal/mol). Favorable hydrophobic interactions important to API binding at MAOA binding cavity was revealed to include conventional hydrogen bond (Cys323 and Tyr444), π-Sulfur (Cys323), π-π Stacked (Tyr407), π-π T-shaped (Phe208), π-lone pair and π-alkyl (Ile335, Ile180) interactions. These results suggest that API is a potent, selective, reversible inhibitor of MAOA with capability of attenuating CUMS-induced depression via inhibiting MAOA enzyme activity and altering other pathomechanisms.

10.
Sci Rep ; 13(1): 11535, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460619

RESUMO

Casting of aluminum with different concentration of alloying elements such as Mg, Mn (similar to that in AA5083) with additional percentages of 0.1, 0.2 and 0.3% Ti, are carried out using graphite crucible. The as-cast microstructure is modified by hot rolling to a thickness of ~ 2 mm. Mechanical and metallurgical and characterization of heat-treated thin sheets are carried out using tensile testing, hardness measurement, metallography, image analysis and optical microscope. By increasing the Ti content, the results show grain refinement and increase in the formation of Al3Ti which reflected positively on the mechanical properties. Specifically, Ultimate tensile strength is increased from 260 MPa (0 wt% Ti) to 345 MPa (0.3 wt% Ti) when using water quenching, 32.6% improvement for air cooling, and 23.3% for furnace cooling. Electrochemical corrosion behavior of heat-treated water quenched, air cooled and furnace cooled samples were tested in 3.5% NaCl solution. The results show that the heat-treated alloys have very good resistance against corrosion, while by increasing the Ti content, the corrosion rate increases due to the grain refinement phenomena.

11.
Comput Biol Chem ; 105: 107909, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418952

RESUMO

To date, Cancer remains a global threat due to its impact on growing life expectancy. With the many efforts and methods of combating the disease, complete success remains a challenge owing to several limitations including cancer cells developing resistance through mutations, off-target effect of some cancer drugs resulting in toxicities, among many others. Aberrant DNA methylation is understood to be the primary reason for improper gene silence, which can result in neoplastic transformation, carcinogenesis, and tumour progression. DNA methyltransferase B (DNMT3B) enzyme is considered a potential target for the treatment of several cancers due to its important role in DNA methylation. However, only a few DNMT3B inhibitors have been reported to date. Herein, in silico molecular recognition techniques such as Molecular docking, Pharmacophore-based virtual screen and MD simulation were employed to identify potential inhibitors of DNMT3B that can halt aberrancy in DNA methylation. Findings initially identified 878 hit compounds based on a designed pharmacophore model from the reference compound Hypericin. Molecular docking was used to rank the hits by testing their efficiency when bound to the target enzyme and the top three (3) selected. All three (3) of the top hits showed excellent pharmacokinetic properties but two (2) (Zinc33330198 and Zinc77235130) were identified to be non-toxic. Molecular dynamic simulation of the final two hits showed good stability, flexibility, and structural rigidity of the compounds on DNMT3B. Finally, thermodynamic energy estimations show both compounds had favourable free energies comprising - 26.04 kcal/mol for Zinc77235130 and - 15.73 kcal/mol for Zinc33330198. Amongst the final two hits, Zinc77235130 showed consistency in favourable results across all the tested parameters and was thus selected as the lead compound for further experimental validation. The identification of this lead compound will form important basis for the inhibition of aberrant DNA methylation in cancer therapy.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
12.
Trop Med Infect Dis ; 8(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37235301

RESUMO

Conventional scolicidal agents are still unsatisfactory in combating hydatid disease due to their low efficacy and increased drug side effects. Therefore, novel scolicides are required. This study aimed to evaluate the antihydatic and immunomodulatory effects of eugenol essential oil (Eug) and its nanoemulsion (Eug-NE) in cystic echinococcosis (CE). Eug and Eug-NE were administered orally to CE-infected rats and compared to albendazole (ABZ). Hydatid cyst development was assessed based on organ weight and hypertrophy indicators of the infected organs, along with a histopathological and histochemical evaluation of collagen content. The immunomodulatory effects of treatment on CE were evaluated by serum cytokine levels measurement of interferon-γ (IFN-γ) and interleukin (IL)-4 and immunohistochemical (IHC) analysis of signal transducer and activator of transcription 4 (STAT4) and GATA-binding protein 3 (GATA3) markers. Eug-NE was the most effective in reducing the cyst weights, organ weights, and hypertrophy indicators and improving histopathological lesions with reduced collagen content. Eug and Eug-NE significantly increased the IFN-γ levels and decreased the IL-4 levels, while IHC analysis demonstrated a significant reduction in STAT4 and GATA3 expression in all treated groups. Eug and Eug-NE demonstrated antihydatic and preventative effects, with a substantial decrease in liver fibrosis compared to that of ABZ. Besides their promising immunomodulatory effects, their good treatment response suggests their use as alternatives or complementary scolicidal agents in hydatid cyst treatment.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37005548

RESUMO

BACKGROUND: Tankyrases (TNKS) are homomultimers existing in two forms, viz. TNKS1 and TNKS2. TNKS2 plays a pivotal role in carcinogenesis by activating the Wnt//ß-catenin pathway. TNKS2 has been identified as a suitable target in oncology due to its crucial role in mediating tumour progression. The discovery of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl) phenyl] imidazolidine-2,4-dione, a hydantoin phenylquinazolinone derivative which exists as a racemic mixture and in its pure enantiomer forms, has reportedly exhibited inhibitory potency towards TNKS2. However, the molecular events surrounding its chirality towards TNKS2 remain unresolved. METHODS: Herein, we employed in silico methods such as molecular dynamics simulation coupled with binding free energy estimations to explore the mechanistic activity of the racemic inhibitor and its enantiomer forms on TNK2 at a molecular level Results: Favourable binding free energies were noted for all three ligands propelled by electrostatic and van der Waals forces. The positive enantiomer demonstrated the highest total binding free energy (-38.15 kcal/mol), exhibiting a more potent binding affinity to TNKS2. Amino acids PHE1035, ALA1038, and HIS1048; PHE1035, HIS1048 and ILE1039; and TYR1060, SER1033 and ILE1059 were identified as key drivers of TNKS2 inhibition for all three inhibitors, characterized by the contribution of highest residual energies and the formation of crucial high-affinity interactions with the bound inhibitors. Further assessment of chirality by the inhibitors revealed a stabilizing effect of the complex systems of all three inhibitors on the TNKS2 structure. Concerning flexibility and mobility, the racemic inhibitor and negative enantiomer revealed a more rigid structure when bound to TNKS2, which could potentiate biological activity interference. The positive enantiomer, however, displayed much more elasticity and flexibility when bound to TNKS2. CONCLUSION: Overall, 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl) phenyl] imidazolidine-2,4-dione and its derivatives showed their inhibitory prowess when bound to the TNKS2 target via in silico assessment. Thus, results from this study offer insight into chirality and the possibility of adjustments of the enantiomer ratio to promote greater inhibitory results. These results could also offer insight into lead optimization to enhance inhibitory effects.

14.
J Mol Model ; 29(4): 122, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995499

RESUMO

CONTEXT: [Formula: see text]-adenosine-methyltransferase (METTL3) is the catalytic domain of the 'writer' proteins which is involved in the post modifications of [Formula: see text]-methyladinosine ([Formula: see text]). Though its activities are essential in many biological processes, it has been implicated in several types of cancer. Thus, drug developers and researchers are relentlessly in search of small molecule inhibitors that can ameliorate the oncogenic activities of METTL3. Currently, STM2457 is a potent, highly selective inhibitor of METTL3 but is yet to be approved. METHODS: In this study, we employed structure-based virtual screening through consensus docking by using AutoDock Vina in PyRx interface and Glide virtual screening workflow of Schrodinger Glide. Thermodynamics via MM-PBSA calculations was further used to rank the compounds based on their total free binding energies. All atom molecular dynamics simulations were performed using AMBER 18 package. FF14SB force fields and Antechamber were used to parameterize the protein and compounds respectively. Post analysis of generated trajectories was analyzed with CPPTRAJ and PTRAJ modules incorporated in the AMBER package while Discovery studio and UCSF Chimera were used for visualization, and origin data tool used to plot all graphs. RESULTS: Three compounds with total free binding energies higher than STM2457 were selected for extended molecular dynamics simulations. The compounds, SANCDB0370, SANCDB0867, and SANCDB1033, exhibited stability and deeper penetration into the hydrophobic core of the protein. They engaged in relatively stronger intermolecular interactions involving hydrogen bonds with resultant increase in stability, reduced flexibility, and decrease in the surface area of the protein available for solvent interactions suggesting an induced folding of the catalytic domain. Furthermore, in silico pharmacokinetics and physicochemical analysis of the compounds revealed good properties suggesting these compounds could serve as promising MEETL3 entry inhibitors upon modifications and optimizations as presented by natural compounds. Further biochemical testing and experimentations would aid in the discovery of effective inhibitors against the berserk activities of METTL3.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Simulação de Acoplamento Molecular , Domínio Catalítico , Proteínas , Metiltransferases
15.
Artigo em Inglês | MEDLINE | ID: mdl-36752293

RESUMO

BACKGROUND: Despite the early success of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of Waldenström macroglobulinemia (WM), these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of these drugs. OBJECTIVE: Recently, the pharmacological activity of KIN-8194 was repurposed to serve as a 'dual-target' inhibitor of BTK and Hematopoietic Cell Kinase (HCK). However, the structural dual inhibitory mechanism remains unexplored, hence the aim of this study. METHODS: Conducting predictive pharmacokinetic profiling of KIN-8194, as well as demonstrating a comparative structural mechanism of inhibition against the above-mentioned enzymes. RESULTS: Our results revealed favourable binding affinities of -20.17 kcal/mol, and -35.82 kcal/mol for KIN-8194 towards HCK and BTK, respectively. Catalytic residues Arg137/174 and Lys42/170 in BTK and Arg303 and Lys75/173/244/247 in HCK were identified as crucial mediators of the dual binding mechanism of KIN-8194, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Prediction of the pharmacokinetics and physicochemical properties of KIN-8194 further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. Structurally, KIN-8194 impacted the stability, flexibility, solvent-accessible surface area, and rigidity of BTK and HCK, characterized by various alterations observed in the bound and unbound structures, which proved enough to disrupt their biological function. CONCLUSION: These structural insights provided a baseline for the understanding of the dual inhibitory activity of KIN-8194. Establishing the cruciality of the interactions between the KIN-8194 and Arg and Lys residues could guide the structure-based design of novel dual BTK/HCK inhibitors with improved therapeutic activities.

16.
Sci Rep ; 13(1): 1432, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697466

RESUMO

This article studied a numerical estimation of the double-diffusive peristaltic flow of a non-Newtonian Sisko nanofluid through a porous medium inside a horizontal symmetric flexible channel under the impact of Joule heating, nonlinear thermal radiation, viscous dissipation, and heat generation/absorption in presence of heat and mass convection, considering effects of the Brownian motion and the thermophoresis coefficients. On the other hand, the long wave approximation was used to transform the nonlinear system of partial differential equations into a nonlinear system of ordinary differential equations which were later solved numerically using the fourth-order Runge-Kutta method with shooting technique using MATLAB package program code. The effects of all physical parameters resulting from this study on the distributions of velocity, temperature, solutal concentration, and nanoparticles volume fraction inside the fluid were studied in addition to a study of the pressure gradients using the 2D and 3D graphs that were made for studying the impact of some parameters on the behavior of the streamlines graphically within the channel with a mention of their physical meaning. Finally, some of the results of this study showed that the effect of Darcy number [Formula: see text] and the magnetic field parameter [Formula: see text] is opposite to the effect of the rotation parameter [Formula: see text] on the velocity distribution whereas, the two parameters nonlinear thermal radiation [Formula: see text] and the ratio temperature [Formula: see text] works on a decrease in the temperature distribution and an increase in both the solutal concentration distribution, and the nanoparticle's volume fraction. Finally, the impact of the rotation parameter [Formula: see text] on the distribution of pressure gradients was positive, but the effect of both Darcy number [Formula: see text] and the magnetic field parameter [Formula: see text] on the same distribution was negative. The results obtained have been compared with the previous results obtained that agreement if the new parameters were neglected and indicate the phenomenon's importance in diverse fields.

17.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680290

RESUMO

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine natural products (MNPs) have attracted considerable attention as alternative sources of antiviral drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules) was virtually screened against 3CLpro with the assistance of molecular docking computations. The performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode was first validated according to the available experimental data. Based on the docking scores, the most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding affinities of those molecules were computed using the MM-GBSA approach. According to MM-GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity against 3CLpro than XF7, with ΔGbinding values of −55.5 and −43.7 kcal/mol, respectively. The steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations. The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues −namely, chetomin A-D− as 3CLpro inhibitors was investigated. These results warrant further in vivo and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/química , Antivirais/uso terapêutico
18.
J Biomol Struct Dyn ; 41(11): 4890-4902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35543250

RESUMO

The Kirsten rat sarcoma oncoprotein (KRAS) has been punctuated by drug development failures for decades due to frequent mutations that occur mostly at codon 12 and the seemingly intractable targeting of the protein. However, with advances in covalent targeting, the oncoprotein is being expunged from the 'undruggable' list of proteins. This feat has seen some covalent drugs at different stages of clinical trials. The advancement of AMG510 and MRTX849 as inhibitors of cysteine mutated KRAS (KRASG12C) to phase-III clinical trials informed the biased selection of AMG510 and MRTX849 for this study. Despite this advance, the molecular and atomistic modus operandi of these drugs is yet to come to light. In this study, we employed computational tools to unravel the atomistic interactions and subsequent conformational effects of AMG510 and MRTX849 on the mutant KRASG12C. It was revealed that AMG510 and MRTX849 complexes presented similar total free binding energies, (ΔGbind), of -88.15 ± 5.96 kcal/mol and -88.71 ± 7.70 kcal/mol, respectively. Gly10, Lys16, Thr58, Gly60, Glu62, Glu63, Arg68, Asp69, Met72, His95, Tyr96, Gln99, Arg102 and Val103 interacted prominently with AMG510 and MRTX849. These residues interacted with the pharmacophoric moieties of AMG510 and MRTX849 via hydrogen bonds with decreasing bond lengths at various stages of the simulation. These interactions together with pi-pi stacking, pi-sigma and pi-alkyl interactions induced unfolding of switch I whiles compacting switch II, which could interrupt the binding of effector proteins to these interfaces. These insights present useful atomistic perspectives into the success of AMG510 and MRTX849 which could guide the design of more selective and potent KRAS inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Piperazinas , Piridinas/uso terapêutico , Proteínas Fúngicas/genética , Mutação , Neoplasias/tratamento farmacológico
19.
J Biomol Struct Dyn ; 41(6): 2419-2430, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35105282

RESUMO

The specific inhibition of aberrant Fibroblast Growth Factor Receptors (FGFRs) has been identified as a feasible strategy to therapeutically ameliorate their respective carcinogenic involvements. High homology among these proteins has however limited efforts towards the discovery of selective small-molecule compounds due to undesirable effects elicited by pan-FGFR inhibitors. A recent study showed the selective activity of a new compound C11 which was >52 times more potent against FGFR1 than FGFR2 and FGFR3, and 4 times than FGFR4. This C11 selective non-covalency was investigated in this study using computational methods since it has remained unresolved. Structural findings revealed that C11 enhanced structural perturbations in FGFR1 with less prominent effects in other FGFRs. High deviations also characterized the C11-bound active pocket of FGFR1 with notable fluctuations across the constituent P-loop, αC helix, hinge region, catalytic, and activation loops. These induced motions were essential for optimal C11 motion an d positioning of its phenalenone ring and prop-2-en-l-yl moiety at the FGFR1 active pocket to interact stably and strongly with A564FGFR1, L484FGFR1, Y563FGFR1, and E562FGFR1 which as well had high energy contributions. C11 exhibited highly unstable binding in F GFRs2-3 with a more steady interaction with FGFR4. Free binding energy (ΔGbind) analyses further estimated the highest interaction energy for C11-FGFR1 with favorable desolvation energy that indicated a deep hydrophobic pocket binding for C11 in FGFR1 compared to other FGFRs. We believe rational insights from this study will contribute to the structure-based design of highly specific FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Transdução de Sinais , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores
20.
Curr Med Chem ; 30(10): 1193-1206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35702782

RESUMO

BACKGROUND: Mouse Double Minute 2 Homolog (MDM2) oncogenic protein is the principal cellular antagonist of the p53 tumor suppressor gene. Restoration of p53 activity by inhibiting the MDM2-P53 interactions at the molecular level has become the cornerstone of cancer research due to its promising anticancer effects. Natural medicinal products possess various chemical structures and represent an essential source for drug discovery. α-Mangostin (AM) and gambogic acid (G250) are plant-derived compounds that showed inhibitory effects on MDM2-P53 interactions in vitro and in vivo. METHODS: Despite the many clinical studies which performed deeper insight about the molecular understanding of the structural mechanisms exhibited by α-Mangostin and Gambogic acid-binding to MDM2 remains critical. In this study, comparative molecular dynamics simulations were performed for each Apo and bound p53 and MDM2 proteins to shed light on the MDM2-p53 interactions and get a better understanding of the inhibition mechanisms. RESULTS: Results revealed atomistic interaction of AM and G250 within the MDM2-p53 interaction cleft. Both compounds mediate the interaction between the α-helix motifs of the p53 amino-terminal domain, which caused a significant separation between orthogonally opposed residues, specifically Lys8 and Gly47 residues of the p53 and MDM2, respectively. Contrasting changes in magnitudes were observed in per-residue fluctuation on AM and G250 (~0.04 nm and ~2.3 nm, respectively). The Radius of gyration (~0.03 nm and 0.04 nm, respectively), C-alpha deviations (~0.06 nm and 0.1 nm, respectively). The phenolic group of AM was found to establish hydrogen interactions with Glu28 and His96 residues of MDM2. The trioxahexacyclo-ring of G250 also forms hydrogen bond interactions with Lys51 and Leu26 residues of MDM2. CONCLUSION: Utilizing the information provided on the inhibitory binding mode adopted by each compound in this study may further assist in the tailored designs for cancer therapeutics.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-mdm2 , Animais , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA