Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Recept Signal Transduct Res ; : 1-13, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189140

RESUMO

Hsp27 is a member of the small heat-shock proteins (sHSPs) - the known cellular line of defence against abnormal protein folding behaviors. Nevertheless, its upregulation is linked to a variety of pathological disorders, including several types of cancers. The ceramide synthases (CerS) mediate the synthesis of ceramide, a critical structural and signaling lipid. Functionally, downstream ceramide metabolites are implicated in the apoptosis process and their abnormal functionality has been linked to anticancer resistance. Studies showed that CerS1 are possibly inhibited by Hsp27 leading to biochemical anticancer effects in vitro. Nevertheless, the nature of such protein-protein interaction (PPI) has not been considerably investigated in molecular terms, hence, we present the first description of the dynamics CerS1-Hsp27 interaction landscapes using molecular dynamics simulations. Time-scale molecular dynamics simulation analysis indicated a system-wide conformational events of decreased stability, increased flexibility, reduced compactness, and decreased folding of CerS1. Analysis of binding energy showed a favorable interaction entailing 56 residues at the interface and a total stabilizing energy of -158 KJ/mol. The CerS1 catalytic domain experienced an opposite trend compared to the protein backbone. Yet, these residues adopted a highly compact conformation as per DCCM and DSSP analysis. Furthermore, conserved residues (SER 212, ASP 213, ALA 240, GLY 243, ASP 319) comprising the substrate shuttling machinery showed notable rigidity implying a restrained ceramide precursor access and assembly; hence, a possible inhibitory mechanism. Findings from this report would streamline a better molecular understanding of CerS1-Hsp27 interactions and decipher its potential avenue toward unexplored anti-cancer mechanisms and therapy.

2.
J Cell Biochem ; : e30633, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148280

RESUMO

Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.

3.
Cell Biochem Biophys ; 82(2): 1159-1177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38869687

RESUMO

Human plasma kallikrein (PKa) is a member of the serine protease family and serves as a key mediator of the kallikrein-kinin system (KKS), which is known for its regulatory roles in inflammation, vasodilation, blood pressure, and coagulation. Genetic dysregulation of KKS leads to Hereditary Angioedema (HAE), which is characterized by spontaneous, painful swelling in various body regions. Importantly, HAE frequently coexists with various cancers. Despite substantial efforts towards the development of PKa inhibitors for HAE, there remains a need for bifunctional agents addressing both anti-cancer and anti-HAE aspects, especially against carcinoma-associated comorbid HAE conditions. Consequently, we investigated the therapeutic potential of the anti-glutamine prodrug, isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate (DRP-104), and its active form, 6-Diazo-5-oxo-l-norleucine (DON), recognized for their anti-cancer properties, as novel PKa inhibitors. Utilizing structure-based in silico methods, we conducted a comparative analysis with berotralstat, a clinically approved HAE prophylactic, and sebetralstat, an investigational HAE therapeutic agent, in Phase 3 clinical trials. Inhibiting PKa with DON resulted in relatively heightened structural stability, rigidity, restricted protein folding, and solvent-accessible loop exposure, contributing to increased intra-atomic hydrogen bond formation. Conversely, PKa inhibition with DRP-104 induced restricted residue flexibility and significantly disrupted the critical SER195-HIS57 arrangement in the catalytic triad. Both DON and DRP-104, along with the reference drugs, induced strong cooperative intra-residue motion and bidirectional displacement in the PKa architecture. The results revealed favorable binding kinetics of DON/DRP-104, showing thermodynamic profiles that were either superior or comparable to those of the reference drugs. These findings support their consideration for clinical investigations into the management of carcinoma-associated HAE.


Assuntos
Angioedemas Hereditários , Simulação de Dinâmica Molecular , Calicreína Plasmática , Humanos , Angioedemas Hereditários/tratamento farmacológico , Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Ligação de Hidrogênio , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Simulação de Acoplamento Molecular
4.
Int J Biol Macromol ; 264(Pt 2): 130698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458296

RESUMO

In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.


Assuntos
Quitosana , Ácidos Cumáricos , Nanopartículas , Glicerol/química , Quitosana/química , Polímeros/química , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
5.
J Cell Biochem ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284235

RESUMO

Human transmembrane serine protease 2 (TMPRSS2) is an important member of the type 2 transmembrane serine protease (TTSP) family with significant therapeutic markings. The search for potent TMPRSS2 inhibitors against severe acute respiratory syndrome coronavirus 2 infection with favorable tissue specificity and off-site toxicity profiles remains limited. Therefore, probing the anti-TMPRSS2 potential of enhanced drug delivery systems, such as nanotechnology and prodrug systems, has become compelling. We report the first in silico study of TMPRSS2 against a prodrug, [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] also known as DRP-104 synthesized from 6-Diazo-5-oxo-l-norleucine (DON). We performed comparative studies on DON and DRP-104 against a clinically potent TMPRSS2 inhibitor, nafamostat, and a standard serine protease inhibitor, 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF) against TMPRSS2 and found improved TMPRSS2 inhibition through synergistic binding of the S1/S1' subdomains. Both DON and DRP-104 had better thermodynamic profiles than AEBSF and nafamostat. DON was found to confer structural stability with strong positive correlated inter-residue motions, whereas DRP-104 was found to confer kinetic stability with restricted residue displacements and reduced loop flexibility. Interestingly, the Scavenger Receptor Cysteine-Rich (SRCR) domain of TMPRSS2 may be involved in its inhibition mechanics. Two previously unidentified loops, designated X (270-275) and Y (293-296) underwent minimal and major structural transitions, respectively. In addition, residues 273-277 consistently transitioned to a turn conformation in all ligated systems, whereas unique transitions were identified for other transitioning residue groups in each TMPRSS2-inhibitor complex. Intriguingly, while both DON and DRP-104 showed similar loop transition patterns, DRP-104 preserved loop structural integrity. As evident from our systematic comparative study using experimentally/clinically validated inhibitors, DRP-104 may serve as a potent and novel TMPRSS2 inhibitor and warrants further clinical investigation.

6.
J Biomol Struct Dyn ; : 1-24, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909584

RESUMO

The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37581526

RESUMO

BACKGROUND: Blocking the oncogenic Wnt//ß-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; tankyrase 2 (TNKS2), protein kinase B (AKT), and cyclin-dependent kinase 9 (CDK9), which propagate the oncogenic Wnt/ß-catenin signalling pathway. METHODS: During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS: Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION: The following structural insights provide a starting point for understanding the pan-inhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.

8.
Comput Biol Chem ; 105: 107909, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418952

RESUMO

To date, Cancer remains a global threat due to its impact on growing life expectancy. With the many efforts and methods of combating the disease, complete success remains a challenge owing to several limitations including cancer cells developing resistance through mutations, off-target effect of some cancer drugs resulting in toxicities, among many others. Aberrant DNA methylation is understood to be the primary reason for improper gene silence, which can result in neoplastic transformation, carcinogenesis, and tumour progression. DNA methyltransferase B (DNMT3B) enzyme is considered a potential target for the treatment of several cancers due to its important role in DNA methylation. However, only a few DNMT3B inhibitors have been reported to date. Herein, in silico molecular recognition techniques such as Molecular docking, Pharmacophore-based virtual screen and MD simulation were employed to identify potential inhibitors of DNMT3B that can halt aberrancy in DNA methylation. Findings initially identified 878 hit compounds based on a designed pharmacophore model from the reference compound Hypericin. Molecular docking was used to rank the hits by testing their efficiency when bound to the target enzyme and the top three (3) selected. All three (3) of the top hits showed excellent pharmacokinetic properties but two (2) (Zinc33330198 and Zinc77235130) were identified to be non-toxic. Molecular dynamic simulation of the final two hits showed good stability, flexibility, and structural rigidity of the compounds on DNMT3B. Finally, thermodynamic energy estimations show both compounds had favourable free energies comprising - 26.04 kcal/mol for Zinc77235130 and - 15.73 kcal/mol for Zinc33330198. Amongst the final two hits, Zinc77235130 showed consistency in favourable results across all the tested parameters and was thus selected as the lead compound for further experimental validation. The identification of this lead compound will form important basis for the inhibition of aberrant DNA methylation in cancer therapy.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
9.
J Mol Model ; 29(4): 122, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995499

RESUMO

CONTEXT: [Formula: see text]-adenosine-methyltransferase (METTL3) is the catalytic domain of the 'writer' proteins which is involved in the post modifications of [Formula: see text]-methyladinosine ([Formula: see text]). Though its activities are essential in many biological processes, it has been implicated in several types of cancer. Thus, drug developers and researchers are relentlessly in search of small molecule inhibitors that can ameliorate the oncogenic activities of METTL3. Currently, STM2457 is a potent, highly selective inhibitor of METTL3 but is yet to be approved. METHODS: In this study, we employed structure-based virtual screening through consensus docking by using AutoDock Vina in PyRx interface and Glide virtual screening workflow of Schrodinger Glide. Thermodynamics via MM-PBSA calculations was further used to rank the compounds based on their total free binding energies. All atom molecular dynamics simulations were performed using AMBER 18 package. FF14SB force fields and Antechamber were used to parameterize the protein and compounds respectively. Post analysis of generated trajectories was analyzed with CPPTRAJ and PTRAJ modules incorporated in the AMBER package while Discovery studio and UCSF Chimera were used for visualization, and origin data tool used to plot all graphs. RESULTS: Three compounds with total free binding energies higher than STM2457 were selected for extended molecular dynamics simulations. The compounds, SANCDB0370, SANCDB0867, and SANCDB1033, exhibited stability and deeper penetration into the hydrophobic core of the protein. They engaged in relatively stronger intermolecular interactions involving hydrogen bonds with resultant increase in stability, reduced flexibility, and decrease in the surface area of the protein available for solvent interactions suggesting an induced folding of the catalytic domain. Furthermore, in silico pharmacokinetics and physicochemical analysis of the compounds revealed good properties suggesting these compounds could serve as promising MEETL3 entry inhibitors upon modifications and optimizations as presented by natural compounds. Further biochemical testing and experimentations would aid in the discovery of effective inhibitors against the berserk activities of METTL3.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Simulação de Acoplamento Molecular , Domínio Catalítico , Proteínas , Metiltransferases
10.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680290

RESUMO

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine natural products (MNPs) have attracted considerable attention as alternative sources of antiviral drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules) was virtually screened against 3CLpro with the assistance of molecular docking computations. The performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode was first validated according to the available experimental data. Based on the docking scores, the most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding affinities of those molecules were computed using the MM-GBSA approach. According to MM-GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity against 3CLpro than XF7, with ΔGbinding values of −55.5 and −43.7 kcal/mol, respectively. The steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations. The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues −namely, chetomin A-D− as 3CLpro inhibitors was investigated. These results warrant further in vivo and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/química , Antivirais/uso terapêutico
11.
Curr Pharm Biotechnol ; 24(6): 814-824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35718983

RESUMO

BACKGROUND: Bruton tyrosine kinase plays a key role in the survival, proliferation, activation, and differentiation of B-lineage cells and the signaling of other receptors. It is overexpressed and constitutively active in the pathogenesis of B cell malignancies and has therefore become a target for therapeutic intervention. Some success has been achieved in the discovery of small molecules, especially in the development of irreversible inhibitors. However, these inhibitors are punctuated by off target effects and have also become less effective in patients with mutations at Cys481. This motivated the search for inhibitors with improved efficacy and different binding modes. METHODS: In this study, we employed two new second generation inhibitors with different binding modes, Zanubrutinib and AS-1763, which are at various levels of clinical trials, to highlight the molecular determinants in the therapeutic inhibition of BTK through computational studies. RESULTS: This study revealed that Zanubrutinib and AS-1763 exhibited free total binding energies of -98.76 ± 4.63 kcal/mol and -51.81 ± 9.94 kcal/mol, respectively, with Zanubrutinib engaging in peculiar hydrogen bond interactions with the hinge residues Glu475 and Met477 including Asn484 and Tyr485 while AS-1763 engaged Lys430, Asp539, and Arg525. These residues contributed the most towards the free total binding energy with energies above -1.0 kcal/mol. The compounds further interacted differentially with other binding site residues through pi-alkyl, pi-cation, pianion, pi-pi-T-shaped, pi-sigma, pi-sulfur and pi-donor hydrogen bonds, and Van der Waals interactions. These interactions resulted in differential fluctuations of the residues with the consequential unfolding of the protein. CONCLUSION: Insights herein would be useful in guiding the discovery of more selective and potent small molecules.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Neoplasias/tratamento farmacológico , Diferenciação Celular
12.
Curr Med Chem ; 30(10): 1193-1206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35702782

RESUMO

BACKGROUND: Mouse Double Minute 2 Homolog (MDM2) oncogenic protein is the principal cellular antagonist of the p53 tumor suppressor gene. Restoration of p53 activity by inhibiting the MDM2-P53 interactions at the molecular level has become the cornerstone of cancer research due to its promising anticancer effects. Natural medicinal products possess various chemical structures and represent an essential source for drug discovery. α-Mangostin (AM) and gambogic acid (G250) are plant-derived compounds that showed inhibitory effects on MDM2-P53 interactions in vitro and in vivo. METHODS: Despite the many clinical studies which performed deeper insight about the molecular understanding of the structural mechanisms exhibited by α-Mangostin and Gambogic acid-binding to MDM2 remains critical. In this study, comparative molecular dynamics simulations were performed for each Apo and bound p53 and MDM2 proteins to shed light on the MDM2-p53 interactions and get a better understanding of the inhibition mechanisms. RESULTS: Results revealed atomistic interaction of AM and G250 within the MDM2-p53 interaction cleft. Both compounds mediate the interaction between the α-helix motifs of the p53 amino-terminal domain, which caused a significant separation between orthogonally opposed residues, specifically Lys8 and Gly47 residues of the p53 and MDM2, respectively. Contrasting changes in magnitudes were observed in per-residue fluctuation on AM and G250 (~0.04 nm and ~2.3 nm, respectively). The Radius of gyration (~0.03 nm and 0.04 nm, respectively), C-alpha deviations (~0.06 nm and 0.1 nm, respectively). The phenolic group of AM was found to establish hydrogen interactions with Glu28 and His96 residues of MDM2. The trioxahexacyclo-ring of G250 also forms hydrogen bond interactions with Lys51 and Leu26 residues of MDM2. CONCLUSION: Utilizing the information provided on the inhibitory binding mode adopted by each compound in this study may further assist in the tailored designs for cancer therapeutics.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-mdm2 , Animais , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
J Biomol Struct Dyn ; 41(10): 4735-4743, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35514136

RESUMO

Anaplastic lymphoma kinase (ALK) fusion genes are found in 3%-5% of non-small cell lung cancers (NSCLCs). NSCLC is the most common type of lung cancer, accounting for 84% of all lung cancer diagnoses. Available treatment options for ALK-positive NSCLCs involve the use of ALK tyrosine kinase inhibitors (ALK-TKIs) which have shown to be effective with a high response rate. Nonetheless, the emergence of multiple compound mutations such as I1171N + F1174I or I1171N + L1198H has been reported to cause resistance to all approved ALK-TKIs. However, the underlying molecular mechanisms surrounding the impact of these compound mutants remain poorly understood. Hence, we performed molecular dynamics simulations to characterize the structural effects and functional implications of these compound mutations. Findings revealed a destabilizing effect on ALK by mutants as compared to the wild-type ALK structure. Also, further insights revealed a lower root-mean-squared fluctuation, radius of gyration, and solvent-accessible surface area values of I1171N + F1174I and I1171N + L1198H ALK compound mutations suggesting that the mutants have a more compact structure and a smaller surface area than the wild-type protein. The mutants also distorted the activation loop residues (Tyr1278, Tyr1282, and Tyr1283) in the ALK structure, which further identify them as possible disruptors of phosphorylation. In contrast to wild conformation, the mutant conformations exhibited a reduced node degree in their residue interaction networks. Collectively, our findings provide deeper insights into the deleterious effects of I1171N + F1174I and I1171N + L1198H ALK compound mutations, which may contribute to NSCLC pathogenesis.Communicated by Ramaswamy H. Sarma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Quinase do Linfoma Anaplásico/genética , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia
14.
J Biomol Struct Dyn ; 41(11): 4890-4902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35543250

RESUMO

The Kirsten rat sarcoma oncoprotein (KRAS) has been punctuated by drug development failures for decades due to frequent mutations that occur mostly at codon 12 and the seemingly intractable targeting of the protein. However, with advances in covalent targeting, the oncoprotein is being expunged from the 'undruggable' list of proteins. This feat has seen some covalent drugs at different stages of clinical trials. The advancement of AMG510 and MRTX849 as inhibitors of cysteine mutated KRAS (KRASG12C) to phase-III clinical trials informed the biased selection of AMG510 and MRTX849 for this study. Despite this advance, the molecular and atomistic modus operandi of these drugs is yet to come to light. In this study, we employed computational tools to unravel the atomistic interactions and subsequent conformational effects of AMG510 and MRTX849 on the mutant KRASG12C. It was revealed that AMG510 and MRTX849 complexes presented similar total free binding energies, (ΔGbind), of -88.15 ± 5.96 kcal/mol and -88.71 ± 7.70 kcal/mol, respectively. Gly10, Lys16, Thr58, Gly60, Glu62, Glu63, Arg68, Asp69, Met72, His95, Tyr96, Gln99, Arg102 and Val103 interacted prominently with AMG510 and MRTX849. These residues interacted with the pharmacophoric moieties of AMG510 and MRTX849 via hydrogen bonds with decreasing bond lengths at various stages of the simulation. These interactions together with pi-pi stacking, pi-sigma and pi-alkyl interactions induced unfolding of switch I whiles compacting switch II, which could interrupt the binding of effector proteins to these interfaces. These insights present useful atomistic perspectives into the success of AMG510 and MRTX849 which could guide the design of more selective and potent KRAS inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Piperazinas , Piridinas/uso terapêutico , Proteínas Fúngicas/genética , Mutação , Neoplasias/tratamento farmacológico
15.
J Biomol Struct Dyn ; 41(6): 2419-2430, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35105282

RESUMO

The specific inhibition of aberrant Fibroblast Growth Factor Receptors (FGFRs) has been identified as a feasible strategy to therapeutically ameliorate their respective carcinogenic involvements. High homology among these proteins has however limited efforts towards the discovery of selective small-molecule compounds due to undesirable effects elicited by pan-FGFR inhibitors. A recent study showed the selective activity of a new compound C11 which was >52 times more potent against FGFR1 than FGFR2 and FGFR3, and 4 times than FGFR4. This C11 selective non-covalency was investigated in this study using computational methods since it has remained unresolved. Structural findings revealed that C11 enhanced structural perturbations in FGFR1 with less prominent effects in other FGFRs. High deviations also characterized the C11-bound active pocket of FGFR1 with notable fluctuations across the constituent P-loop, αC helix, hinge region, catalytic, and activation loops. These induced motions were essential for optimal C11 motion an d positioning of its phenalenone ring and prop-2-en-l-yl moiety at the FGFR1 active pocket to interact stably and strongly with A564FGFR1, L484FGFR1, Y563FGFR1, and E562FGFR1 which as well had high energy contributions. C11 exhibited highly unstable binding in F GFRs2-3 with a more steady interaction with FGFR4. Free binding energy (ΔGbind) analyses further estimated the highest interaction energy for C11-FGFR1 with favorable desolvation energy that indicated a deep hydrophobic pocket binding for C11 in FGFR1 compared to other FGFRs. We believe rational insights from this study will contribute to the structure-based design of highly specific FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Transdução de Sinais , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores
16.
Anticancer Agents Med Chem ; 23(8): 953-966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36453510

RESUMO

BACKGROUND: Heterozygous mutations in the cytoplasmic and mitochondrial isoforms of isocitrate dehydrogenase enzymes 1 and 2 subtypes have been extensively exploited as viable druggable targets, as they decrease the affinity of isocitrate and higher affinity of D-2-hydroxyglutarate, an oncometabolite. OBJECTIVE: Vorasidenib (AG-881) has recently been reported as a promising dual inhibitor of mutant isocitrate dehydrogenase 1 and 2 with the ability to penetrate the blood-brain barrier towards the treatment of low-grade glioma. In order to combat drug resistance and toxicity levels, this compelled us to further investigate this substance as a basis for the creation of potential selective inhibitors of mutant isocitrate dehydrogenases 1 and 2. METHODS: By employing a wide range of computational techniques, binding moieties of AG-881 that contributed towards its selective binding to isocitrate dehydrogenase enzymes 1 and 2 were identified and subsequently used to generate pharmacophore models for the screening of potential inhibitor drugs that were further assessed by their pharmacokinetics and physicochemical properties. RESULTS: AG-881 was identified as the most favorable candidate for isocitrate dehydrogenase enzyme 1, exhibiting a binding free energy of -28.69 kcal/mol. ZINC93978407 was the most favorable candidatefor isocitrate dehydrogenase enzyme 2, displaying a strong binding free energy of -27.10 kcal/mol. ZINC9449923 and ZINC93978407 towards isocitrate dehydrogenase enzyme 1 and 2 showed good protein structural stability with a low radius of gyration values relative to AG-881. CONCLUSION: We investigated that ZINC9449923 of isocitrate dehydrogenase enzyme 1 and ZINC 93978407 of isocitrate dehydrogenase enzyme 2 could serve as promising candidates for the treatment of lower-grade glioma as they cross the blood-brain barrier, and present with lower toxicity levels relative to AG-881.


Assuntos
Antineoplásicos , Glioma , Humanos , Isocitrato Desidrogenase/genética , Farmacóforo , Isocitratos , Antineoplásicos/farmacologia , Mutação
17.
J Recept Signal Transduct Res ; 43(6): 133-143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38166612

RESUMO

Triple-negative breast cancer (TNBC) is associated with high-grade invasive carcinoma leading to a 10% to 15% death rate in younger premenopausal women. Targeting cancerous inhibitors of protein phosphatase (CIP2A) has been a highly effective approach for exploring therapeutic drug candidates. Lapatinib, a dual tyrosine kinase inhibitor, has shown promising inhibition properties by inducing apoptosis in TNBC carcinogenesis in vivo. Despite knowledge of the 3D structure of CIP2A, no reports provide insight into CIP2A ligand binding sites. To this effect, we conducted in silico site identification guided by lapatinib binding. Four of the five sites identified were cross-validated, and the stem domain revealed more excellent ligand binding affinity. The binding affinity of lapatinib in these sites was further computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) approach. According to MM/PBSA//200 ns MD simulations, lapatinib exhibited a higher binding affinity against CIP2A in site 2 with ΔG critical values of -37.1 kcal/mol. The steadiness and tightness of lapatinib with CIP2A inside the stem domain disclosed glutamic acid-318 as the culprit amino acid with the highest electrostatic energy. These results provide clear information on the CIP2A domain capable of ligand binding and validate lapatinib as a promising CIP2A inhibitor in TNBC carcinogenesis.


Assuntos
Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Lapatinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ligantes , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição , Sítios de Ligação , Carcinogênese , Linhagem Celular Tumoral
18.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36297293

RESUMO

The efficacy of pure and aluminum (Al)-doped boron nitride nanocarriers (B12N12 and AlB11N12) in adsorbing Chlormethine (CM), an anti-cancer drug, was comparatively dissected by means of the density functional theory method. The CM∙∙∙B12N12 and ∙∙∙AlB11N12 complexes were studied within two configurations, A and B, in which the adsorption process occurred via N∙∙∙ and Cl∙∙∙B/Al interactions, respectively. The electrostatic potential affirmations confirmed the opulent ability of the studied nanocarriers to engage in delivering CM via two prominent electrophilic sites (B and Al). Furthermore, the adsorption process within the CM∙∙∙AlB11N12 complexes was noticed to be more favorable compared to that within the CM∙∙∙B12N12 analog and showed interaction and adsorption energy values up to -59.68 and -52.40 kcal/mol, respectively, for configuration A. Symmetry-adapted perturbation theory results indicated that electrostatic forces were dominant in the adsorption process. Notably, the adsorption of CM over B12N12 and AlB11N12 nanocarriers exhibited predominant changes in their electronic properties. An elemental alteration was also revealed for the softness and hardness of B12N12 and AlB11N12 nanocarriers before and following the CM adsorption. Spontaneity and exothermic nature were obviously observed for the studied complexes and confirmed by the negative values of thermodynamic parameters. In line with energetic manifestation, Gibbs free energy and enthalpy change were drastically increased by the Al doping process, with values raised to -37.15 and -50.14 kcal/mol, respectively, for configuration A of the CM∙∙∙AlB11N12 complex. Conspicuous enhancement was noticed for the adsorption process in the water phase more than that in the gas phase and confirmed by the negative values of the solvation energy up to -53.50 kcal/mol for configuration A of the CM∙∙∙AlB11N12 complex. The obtained outcomes would be the linchpin for the future utilization of boron nitride as a nanocarrier.

19.
Cell Biochem Biophys ; 80(4): 633-645, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36184717

RESUMO

The MDM2-p53 protein-protein interaction is a promising model for researchers to design, study, and discover new anticancer drugs. The design of therapeutically active compounds that can maintain or restore the binding of MDM2 to p53 has been found to limit the oncogenic activities of both. This led to the current development of a group of xanthone-core and cis-imidazoline analogs compounds, among which γ-Mangostin (GM), α-Mangostin (AM), and Nutlin exhibited their MDM2-p53 interaction inhibitory effects. Therefore, in this study, we seek to determine the mechanisms by which these compounds elicit MDM2-p53 interaction targeting. Unique to the binding of GM, AM, and Nutlin, from our findings, they share the same three active site residues Val76, Tyr50, and Gly41, which represent the top active side residues that contribute to high electrostatic energy. Consequently, the free binding energy contributed enormously to the binding of these compounds, which culminated in the high binding affinities of GM, AM, and Nutlin with high values. Furthermore, GM, AM, and Nutlin commonly interrupted the stable and compact conformation of MDM2 coupled with its active site, where Cα deviations were relatively high. We believe that our findings would assist in the design of more potent active anticancer drugs.


Assuntos
Antineoplásicos , Garcinia mangostana , Imidazolinas , Xantonas , Domínio Catalítico , Garcinia mangostana/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/farmacologia , Simulação de Dinâmica Molecular , Piperazinas/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Xantonas/farmacologia
20.
J Mol Model ; 28(11): 355, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222928

RESUMO

Recently, the non-covalent Bruton tyrosine kinase (BTK) inhibitor fenebrutinib was presented as a therapeutic option with strong inhibitory efficacy against a single (C481S) and double (T474S/C481S) BTK variant in the treatment of Waldenström macroglobulinemia (WM). However, the molecular events surrounding its inhibition mechanism towards this variant remain unresolved. Herein, we employed in silico methods such as molecular dynamic simulation coupled with binding free energy estimations to explore the mechanistic activity of the fenebrutinib on (C481S) and (T474S/C481S) BTK variant, at a molecular level. Our investigations reveal that amino acid arginine contributed immensely to the total binding energy, this establishing the cruciality of amino acid residues, Arg132 and Arg156 in (C481S) and Arg99, Arg137, and Arg132 in (T474S/C481S) in the binding of fenebrutinib towards both BTK variants. The structural orientations of fenebrutinib within the respective hydrophobic pockets allowed favorable interactions with binding site residues, accounting for its superior binding affinity by 24.5% and relative high hydrogen bond formation towards (T474S/C481S) when compared with (C481S) BTK variants. Structurally, fenebrutinib impacted the stability, flexibility, and solvent accessible surface area of both BTK variants, characterized by various alterations observed in the bound and unbound structures, which proved enough to disrupt their biological function. Findings from this study, therefore, provide insights into the inhibitory mechanism of fenebrutinib at the atomistic level and reveal its high selectivity towards BTK variants. These insights could be key in designing and developing BTK mutants' inhibitors to treat Waldenström macroglobulinemia (WM).


Assuntos
Macroglobulinemia de Waldenstrom , Adenina , Tirosina Quinase da Agamaglobulinemia/genética , Aminoácidos/genética , Arginina/genética , Arginina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Mutação , Piperazinas , Piperidinas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Piridonas , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Solventes , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA