Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cells ; 11(7)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406673

RESUMO

Newborn screening (NBS) programmes are considered to be one of the most successful secondary prevention measures in childhood to prevent or reduce morbidity and/or mortality via early disease identification and subsequent initiation of therapy. However, while many rare diseases can now be detected at an early stage using appropriate diagnostics, the introduction of a new target disease requires a detailed analysis of the entire screening process, including a robust scientific background, analytics, information technology, and logistics. In addition, ethics, financing, and the required medical measures need to be considered to allow the benefits of screening to be evaluated at a higher level than its potential harm. Infantile nephropathic cystinosis (INC) is a very rare lysosomal metabolic disorder. With the introduction of cysteamine therapy in the early 1980s and the possibility of renal replacement therapy in infancy, patients with cystinosis can now reach adulthood. Early diagnosis of cystinosis remains important as this enables initiation of cysteamine at the earliest opportunity to support renal and patient survival. Using molecular technologies, the feasibility of screening for cystinosis has been demonstrated in a pilot project. This review aims to provide insight into NBS and discuss its importance for nephropathic cystinosis using molecular technologies.


Assuntos
Cistinose , Síndrome de Fanconi , Adulto , Cisteamina/uso terapêutico , Cistinose/complicações , Cistinose/diagnóstico , Cistinose/tratamento farmacológico , Síndrome de Fanconi/complicações , Humanos , Recém-Nascido , Triagem Neonatal , Projetos Piloto
2.
Pediatr Nephrol ; 37(7): 1555-1566, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791528

RESUMO

BACKGROUND: Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by kidney and extra-renal complications due to the accumulation of cystine crystals in various tissues and organs. Herein, we describe the early neuromuscular complications in a cohort of pediatric nephropathic cystinosis patients. METHODS: We prospectively evaluated the clinical, biochemical, and neurophysiological data of 15 cystinosis patients. Neurophysiological evaluation was performed to confirm or exclude presence of neuropathy and/or myopathy. RESULTS: Patients' age ranged between 20 and 216 months at time of examination. Nine patients were males. Three patients had early abnormal neurophysiological features consistent with neuromuscular involvement (clinically asymptomatic proximal myopathy with a patchy distribution in one patient and isolated asymptomatic sensory nerve conduction changes in two patients). A fourth patient had mixed abnormal motor and sensory axonal neuropathic changes associated with overt clinical features (predominantly motor symptoms). Patients with abnormal neuromuscular features were significantly older in age than the unaffected group (P = 0.005) and had a diagnosis of cystinosis with subsequent cysteamine therapy at a significantly older age than the unaffected group (P = 0.027 and 0.001, respectively). CONCLUSIONS: We expanded the recognized phenotypes of cystinosis neuromuscular complications with early proximal skeletal myopathy and symptomatic motor and sensory axonal neuropathy. Early asymptomatic neuromuscular complications could develop in pediatric patients and would require neurophysiological studies for early detection prior to development of overt clinical manifestations. Prompt diagnosis and timely initiation of cysteamine therapy with recommended dose can delay the development of neuromuscular complications. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Cistinose , Síndrome de Fanconi , Doenças Musculares , Adolescente , Criança , Estudos de Coortes , Cisteamina/uso terapêutico , Cistinose/complicações , Cistinose/diagnóstico , Cistinose/tratamento farmacológico , Feminino , Humanos , Masculino , Doenças Musculares/induzido quimicamente , Doenças Musculares/complicações
3.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872655

RESUMO

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Assuntos
Antígenos de Neoplasias/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Doenças da Imunodeficiência Primária/imunologia , Viroses/genética , Antígenos de Neoplasias/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/diagnóstico por imagem , Inflamação/genética , Inflamação/imunologia , Masculino , Doenças da Imunodeficiência Primária/diagnóstico por imagem , Doenças da Imunodeficiência Primária/genética , Viroses/diagnóstico por imagem , Viroses/imunologia
4.
Pediatr Nephrol ; 35(12): 2307-2317, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32666370

RESUMO

BACKGROUND: Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disorder that initially affects the kidney progressing to multi-organ failure due to accumulation of cystine in all tissue compartments. OBJECTIVE: The main objective of this study is the evaluation of cardiac function in cystinosis patients using non-conventional echocardiographic modalities like pulsed wave tissue Doppler imaging (PW-TDI) and 2D speckle tracking echocardiography (2D-STE). METHODS: This is a case control study conducted on fifteen patients with cystinosis and 15 normal controls. Echocardiography was done for all participants and PW-TDI was performed for measurement of S', E', A' velocities and myocardial performance index (MPI) at basal parts of septal, left ventricle (LV), and right ventricle (RV) free walls. 2D-STE was done for evaluation of global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) of LV. Mitral E and A velocities and tricuspid annular plane systolic excursion (TAPSE) were also measured. RESULTS: The GLS, GRS, and S' velocity at basal septum and LV lateral wall were significantly lower in patients denoting LV systolic dysfunction (p = 0.005, p < 0.0001, p = 0.001, p = 0.006, respectively), while E/E' were significantly higher in patients group denoting LV diastolic dysfunction (p < 0.001). For RV function, TAPSE, S', and E' velocity were significantly lower in patients group (p 0.013, p < 0.01, p = 0.05, respectively) indicating RV systolic and diastolic dysfunction. The TDI-derived MPI for both LV and RV were significantly higher in patients group (p < 0.0001, p < 0.01, respectively) indicating both ventricular systolic and diastolic dysfunction. For prediction of cardiac dysfunction among patients, the receiver operating characteristic (ROC) curve showed that GRS ≤ 29% had sensitivity 93.3% and specificity 100%, GLS > - 20.1% had sensitivity 66.7% and specificity 93.3%, LV-E/E' >7.87 had sensitivity 73.3% and specificity 93.3%, and MPI-LV > 0.36 had sensitivity 100% and specificity 93.3% while MPI-RV > 0.29 had sensitivity 80% and specificity 93.3% and TAPSE ≤ 19 mm had sensitivity 80% and specificity 73.3%. CONCLUSIONS: Patients with cystinosis have significant both left and right ventricular dysfunction, which can be better evaluated using the non-conventional echocardiographic modalities like TDI and 2D-STE for early detection of subtle cardiac dysfunction.


Assuntos
Cistinose/fisiopatologia , Disfunção Ventricular/fisiopatologia , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Cistinose/complicações , Ecocardiografia Doppler , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Doenças Raras , Disfunção Ventricular/etiologia , Adulto Jovem
5.
J Inherit Metab Dis ; 42(5): 1019-1029, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31177550

RESUMO

Cystinosis is an autosomal recessive storage disease due to impaired transport of cystine out of lysosomes. Since the accumulation of intracellular cystine affects all organs and tissues, the management of cystinosis requires a specialized multidisciplinary team consisting of pediatricians, nephrologists, nutritionists, ophthalmologists, endocrinologists, neurologists' geneticists, and orthopedic surgeons. Treatment with cysteamine can delay or prevent most clinical manifestations of cystinosis, except the renal Fanconi syndrome. Virtually all individuals with classical, nephropathic cystinosis suffer from cystinosis metabolic bone disease (CMBD), related to the renal Fanconi syndrome in infancy and progressive chronic kidney disease (CKD) later in life. Manifestations of CMBD include hypophosphatemic rickets in infancy, and renal osteodystrophy associated with CKD resulting in bone deformities, osteomalacia, osteoporosis, fractures, and short stature. Assessment of CMBD involves monitoring growth, leg deformities, blood levels of phosphate, electrolytes, bicarbonate, calcium, and alkaline phosphatase, periodically obtaining bone radiographs, determining levels of critical hormones and vitamins, such as thyroid hormone, parathyroid hormone, 25(OH) vitamin D, and testosterone in males, and surveillance for nonrenal complications of cystinosis such as myopathy. Treatment includes replacement of urinary losses, cystine depletion with oral cysteamine, vitamin D, hormone replacement, physical therapy, and corrective orthopedic surgery. The recommendations in this article came from an expert meeting on CMBD that took place in Salzburg, Austria, in December 2016.


Assuntos
Doenças Ósseas/terapia , Cisteamina/uso terapêutico , Cistinose/tratamento farmacológico , Administração Oral , Doenças Ósseas/etiologia , Cisteamina/administração & dosagem , Cistinose/complicações , Gerenciamento Clínico , Síndrome de Fanconi/tratamento farmacológico , Feminino , Humanos , Masculino
6.
Nephron ; 141(2): 133-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30554218

RESUMO

Mutations in the CTNS gene encoding the lysosomal membrane cystine transporter cystinosin are the cause of cystinosis, an autosomal recessive lysosomal storage disease. More than 140 CTNS mutations have been reported worldwide. Recent studies have discovered that cystinosin exerts other key cellular functions beyond cystine transport such as regulation of oxidative state, lysosomal dynamics and autophagy. Here, we review the different mutations described in the CTNS gene and the geographical distribution of incidence. In addition, the characteristics of the various mutations in relation to the functions of cystinosin needs to be further elucidated. In this review, we highlight the functional consequences of the different mutations in correlation with the clinical phenotypes. Moreover, we propose how this understanding would be fundamental for the development of new technologies through targeted gene therapy, holding promises for a possible cure of the kidney and extra-renal phenotypes of cystinosis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinose/genética , Reparo do DNA , Mutação , Animais , Cistinose/epidemiologia , Modelos Animais de Doenças , Genótipo , Geografia , Humanos , Incidência , Fenótipo
7.
Pediatr Transplant ; 23(1): e13313, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30475440

RESUMO

Primary hyperoxalurias are rare inborn errors of metabolism with deficiency of hepatic enzymes that lead to excessive urinary oxalate excretion and overproduction of oxalate which is deposited in various organs. Hyperoxaluria results in serious morbid-ity, end stage kidney disease (ESKD), and mortality if left untreated. Combined liver kidney transplantation (CLKT) is recognized as a management of ESKD for children with hyperoxaluria type 1 (PH1). This study aimed to report outcome of CLKT in a pediatric cohort of PH1 patients, through retrospective analysis of data of 8 children (2 girls and 6 boys) who presented by PH1 to Wadi El Nil Pediatric Living Related Liver Transplant Unit during 2001-2017. Mean age at transplant was 8.2 ± 4 years. Only three of the children underwent confirmatory genotyping. Three patients died prior to surgery on waiting list. The first attempt at CLKT was consecutive, and despite initial successful liver transplant, the girl died of biliary peritonitis prior to scheduled renal transplant. Of the four who underwent simultaneous CLKT, only two survived and are well, one with insignificant complications, and other suffered from abdominal Burkitt lymphoma managed by excision and resection anastomosis, four cycles of rituximab, cyclophosphamide, vincristine, and prednisone. The other two died, one due to uncontrollable bleeding within 36 hours of procedure, while the other died awaiting renal transplant after loss of renal graft to recurrent renal oxalosis 6 months post-transplant. PH1 with ESKD is a rare disease; simultaneous CLKT offers good quality of life for afflicted children. Graft shortage and renal graft loss to oxalosis challenge the outcome.


Assuntos
Hiperoxalúria Primária/cirurgia , Transplante de Rim/métodos , Transplante de Fígado/métodos , Criança , Pré-Escolar , Feminino , Seguimentos , Sobrevivência de Enxerto , Humanos , Hiperoxalúria Primária/mortalidade , Masculino , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
8.
J Pediatr ; 199: 22-28.e6, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753540

RESUMO

OBJECTIVE: To identify prenatal, perinatal, and postnatal risk factors for dialysis within the first year of life in children with autosomal recessive polycystic kidney disease (ARPKD) as a basis for parental counseling after prenatal and perinatal diagnosis. STUDY DESIGN: A dataset comprising 385 patients from the ARegPKD international registry study was analyzed for potential risk markers for dialysis during the first year of life. RESULTS: Thirty-six out of 385 children (9.4%) commenced dialysis in the first year of life. According to multivariable Cox regression analysis, the presence of oligohydramnios or anhydramnios, prenatal kidney enlargement, a low Apgar score, and the need for postnatal breathing support were independently associated with an increased hazard ratio for requiring dialysis within the first year of life. The increased risk associated with Apgar score and perinatal assisted breathing was time-dependent and vanished after 5 and 8 months of life, respectively. The predicted probabilities for early dialysis varied from 1.5% (95% CI, 0.5%-4.1%) for patients with ARPKD with no prenatal sonographic abnormalities to 32.3% (95% CI, 22.2%-44.5%) in cases of documented oligohydramnios or anhydramnios, renal cysts, and enlarged kidneys. CONCLUSIONS: This study, which identified risk factors associated with onset of dialysis in ARPKD in the first year of life, may be helpful in prenatal parental counseling in cases of suspected ARPKD.


Assuntos
Rim Policístico Autossômico Recessivo/terapia , Diálise Renal , Medição de Risco , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Rim Policístico Autossômico Recessivo/diagnóstico , Gravidez , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Ultrassonografia Pré-Natal
9.
PLoS One ; 13(1): e0191224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351342

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40-50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.


Assuntos
Biomarcadores Tumorais/genética , Síndrome de Fraser/genética , Mutação de Sentido Incorreto , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Biomarcadores Tumorais/química , Proteínas de Ligação ao Cálcio , Criança , Consanguinidade , Sequência Conservada , Éxons , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Humanos , Masculino , Camundongos , Modelos Animais , Modelos Moleculares , Linhagem , Homologia de Sequência de Aminoácidos , Sistema Urogenital/crescimento & desenvolvimento , Sistema Urogenital/metabolismo
10.
J Clin Invest ; 127(12): 4257-4269, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058690

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of chronic kidney disease. Here, we identified recessive mutations in the gene encoding the actin-binding protein advillin (AVIL) in 3 unrelated families with SRNS. While all AVIL mutations resulted in a marked loss of its actin-bundling ability, truncation of AVIL also disrupted colocalization with F-actin, thereby leading to impaired actin binding and severing. Additionally, AVIL colocalized and interacted with the phospholipase enzyme PLCE1 and with the ARP2/3 actin-modulating complex. Knockdown of AVIL in human podocytes reduced actin stress fibers at the cell periphery, prevented recruitment of PLCE1 to the ARP3-rich lamellipodia, blocked EGF-induced generation of diacylglycerol (DAG) by PLCE1, and attenuated the podocyte migration rate (PMR). These effects were reversed by overexpression of WT AVIL but not by overexpression of any of the 3 patient-derived AVIL mutants. The PMR was increased by overexpression of WT Avil or PLCE1, or by EGF stimulation; however, this increased PMR was ameliorated by inhibition of the ARP2/3 complex, indicating that ARP-dependent lamellipodia formation occurs downstream of AVIL and PLCE1 function. Together, these results delineate a comprehensive pathogenic axis of SRNS that integrates loss of AVIL function with alterations in the action of PLCE1, an established SRNS protein.


Assuntos
Proteínas dos Microfilamentos , Mutação , Síndrome Nefrótica/congênito , Fosfoinositídeo Fosfolipase C , Podócitos , Pseudópodes , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular/genética , Diglicerídeos/genética , Diglicerídeos/metabolismo , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Pseudópodes/genética , Pseudópodes/metabolismo
11.
Am J Med Genet A ; 173(10): 2697-2702, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815891

RESUMO

Walker-Warburg syndrome (WWS) is a severe form of congenital muscular dystrophy secondary to α-dystroglycanopathy with muscle, brain, and eye abnormalities often leading to death in the first weeks of life. It is transmitted in an autosomal recessive pattern, and has been linked to at least 15 different genes; including protein O-mannosyltransferase 1 (POMT1), protein O-mannosyltransferase 2 (POMT2), protein O-mannose beta-1,2-N acetylglucosaminyltransferase (POMGNT1), fukutin (FKTN), isoprenoid synthase domain-containing protein (ISPD), and other genes. We report on a consanguineous family with four consecutive siblings affected by this condition with lethal outcome in three (still birth), and termination of the fourth pregnancy based on antenatal MRI identification of brain and kidney anomalies that heralded proper and deep clinical phenotyping. The diagnosis of WWS was suggested based on the unique collective phenotype comprising brain anomalies in the form of lissencephaly, subcortical/subependymal heterotopia, and cerebellar hypoplasia shared by all four siblings; microphthalmia in one sibling; and large cystic kidneys in the fetus and another sibling. Other unshared neurological abnormalities included hydrocephalus and Dandy-Walker malformation. Whole exome sequencing of the fetus revealed a highly conserved missense mutation in POMT2 that is known to cause WWS with brain and eye anomalies.In conclusion, the heterogeneous clinical presentation in the four affected conceptions with POMT2 mutation expands the current clinical spectrum of POMT2-associated WWS to include large cystic kidneys; and confirms intra-familial variability in terms of brain, kidney, and eye anomalies.


Assuntos
Doenças Fetais/patologia , Doenças Renais Císticas/patologia , Manosiltransferases/genética , Mutação de Sentido Incorreto , Síndrome de Walker-Warburg/complicações , Feminino , Doenças Fetais/genética , Predisposição Genética para Doença , Humanos , Doenças Renais Císticas/etiologia , Masculino , Linhagem , Fenótipo , Gravidez , Irmãos , Síndrome de Walker-Warburg/genética , Sequenciamento do Exoma/métodos
12.
Nephrol Ther ; 13(3): 176-182, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161266

RESUMO

BACKGROUND AND AIM: Primary hyperoxalurias are rare inborn errors of metabolism resulting in increased endogenous production of oxalate that leads to excessive urinary oxalate excretion. Diagnosis of primary hyperoxaluria type 1 (PH1) is a challenging issue and depends on diverse diagnostic tools including biochemical analysis of urine, stone analysis, renal biopsy, genetic studies and in some cases liver biopsy for enzyme assay. We characterized the clinical presentation as well as renal and extrarenal phenotypes in PH1 patients. METHODS: This descriptive cohort study included patients with presumable PH1 presenting with nephrolithiasis and/or nephrocalcinosis (NC). Precise clinical characterization of renal phenotype as well as systemic involvement is reported. AGXT mutational analysis was performed to confirm the diagnosis of PH1. RESULTS: The study cohort included 26 patients with presumable PH1 with male to female ratio of 1.4:1. The median age at time of diagnosis was 6 years, nevertheless the median age at initial symptoms was 3 years. Thirteen patients (50%) were diagnosed before the age of 5 years. Two patients had no symptoms and were diagnosed while screening siblings of index patients. Seventeen patients (65.4%) had reached end-stage renal disease (ESRD): 6/17 (35.3%) during infancy, 4/17 (23.5%) in early childhood and 7/17 (41.29%) in late childhood. Two patients (7.7%) had clinically manifest extra renal (retina, heart, bone, soft tissue) involvement. Mutational analysis of AGXT gene confirmed the diagnosis of PH1 in 15 out of 19 patients (79%) where analysis had been performed. Fifty percent of patients with maintained renal functions had projected 10 years renal survival. CONCLUSION: PH1 is a heterogeneous disease with wide spectrum of clinical, imaging and functional presentation. More than two-thirds of patients presented prior to the age of 5 years; half of them with the stormy course of infantile PH1. ESRD was the commonest presenting manifestation in two-thirds of our cohort.


Assuntos
Hiperoxalúria Primária/diagnóstico , Hiperoxalúria Primária/genética , Mutação , Transaminases/genética , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Consanguinidade , Egito , Feminino , Humanos , Hiperoxalúria Primária/metabolismo , Hiperoxalúria Primária/mortalidade , Lactente , Falência Renal Crônica/genética , Masculino , Nefrocalcinose/diagnóstico , Nefrocalcinose/genética , Nefrolitíase/diagnóstico , Nefrolitíase/genética , Fenótipo , Piridoxina/uso terapêutico , Estudos Retrospectivos , Fatores de Risco , Centros de Atenção Terciária , Resultado do Tratamento , Complexo Vitamínico B
13.
Pediatr Nephrol ; 32(9): 1489-1499, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27848095

RESUMO

Urinary calculi are being recognized more frequently in children and the urinary bladder is the most common site for stone formation in the lower urinary tract. Bladder calculi are grouped into three basic categories: primary idiopathic/endemic, secondary, and migrant. The incidence of vesical calculi has declined significantly in the last 70 years in developed nations owing to improvements in nutrition and socioeconomic conditions, but it is still high in developing nations. Primary idiopathic/endemic bladder calculi typically occur in children, in the absence of urinary tract infection (UTI), urinary stasis, or foreign body, and diet lacking in animal proteins is the major contributor factor. Comprehensive preventive and treatment strategies are critical for improving the quality of life of diseased children, in addition to helping to eradicate, or at least decrease, the incidence of endemic bladder calculi in developing nations.


Assuntos
Doenças Endêmicas/prevenção & controle , Comportamento Alimentar , Proteínas de Carne , Qualidade de Vida , Cálculos da Bexiga Urinária/epidemiologia , Países em Desenvolvimento/estatística & dados numéricos , Doenças Endêmicas/estatística & dados numéricos , Humanos , Incidência , Bexiga Urinária/patologia
14.
Kidney Int ; 89(6): 1192-203, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27181776

RESUMO

Nephropathic cystinosis is an autosomal recessive metabolic, lifelong disease characterized by lysosomal cystine accumulation throughout the body that commonly presents in infancy with a renal Fanconi syndrome and, if untreated, leads to end-stage kidney disease (ESKD) in the later childhood years. The molecular basis is due to mutations in CTNS, the gene encoding for the lysosomal cystine-proton cotransporter, cystinosin. During adolescence and adulthood, extrarenal manifestations of cystinosis develop and require multidisciplinary care. Despite substantial improvement in prognosis due to cystine-depleting therapy with cysteamine, no cure of the disease is currently available. Kidney Disease: Improving Global Outcomes (KDIGO) convened a Controversies Conference on cystinosis to review the state-of-the-art knowledge and to address areas of controversies in pathophysiology, diagnostics, monitoring, and treatment in different age groups. More importantly, promising areas of investigation that may lead to optimal outcomes for patients afflicted with this lifelong, systemic disease were discussed with a research agenda proposed for the future.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cisteamina/uso terapêutico , Eliminadores de Cistina/uso terapêutico , Cistina/metabolismo , Cistinose/etiologia , Doenças Raras/etiologia , Adolescente , Adulto , Fatores Etários , Criança , Congressos como Assunto , Cisteamina/efeitos adversos , Eliminadores de Cistina/efeitos adversos , Cistinose/complicações , Cistinose/diagnóstico , Cistinose/terapia , Síndrome de Fanconi/complicações , Síndrome de Fanconi/tratamento farmacológico , Testes Genéticos , Terapia Genética , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas , Humanos , Terapia de Imunossupressão/efeitos adversos , Lactente , Falência Renal Crônica/etiologia , Transplante de Rim/efeitos adversos , Lisossomos/metabolismo , Mutação , Doenças Raras/complicações , Doenças Raras/diagnóstico , Doenças Raras/terapia , Diálise Renal
15.
Orphanet J Rare Dis ; 11: 47, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102039

RESUMO

Cystinosis is the most common hereditary cause of renal Fanconi syndrome in children. It is an autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene encoding for the carrier protein cystinosin, transporting cystine out of the lysosomal compartment. Defective cystinosin function leads to intra-lysosomal cystine accumulation in all body cells and organs. The kidneys are initially affected during the first year of life through proximal tubular damage followed by progressive glomerular damage and end stage renal failure during mid-childhood if not treated. Other affected organs include eyes, thyroid, pancreas, gonads, muscles and CNS. Leucocyte cystine assay is the cornerstone for both diagnosis and therapeutic monitoring of the disease. Several lines of treatment are available for cystinosis including the cystine depleting agent cysteamine, renal replacement therapy, hormonal therapy and others; however, no curative treatment is yet available. In the current review we will discuss the most important clinical features of the disease, advantages and disadvantages of the current diagnostic and therapeutic options and the main topics of future research in cystinosis.


Assuntos
Cistinose/diagnóstico , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Criança , Cistina/metabolismo , Cistinose/tratamento farmacológico , Cistinose/etiologia , Cistinose/metabolismo , Humanos
16.
Nat Commun ; 7: 10822, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26905694

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.


Assuntos
Caderinas/genética , Adesão Celular/genética , Movimento Celular/genética , Fibroblastos/metabolismo , Síndrome Nefrótica/congênito , Podócitos/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Dilatação Patológica/genética , Técnicas de Silenciamento de Genes , Hematúria/genética , Humanos , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Lisencefalia/genética , Camundongos , Mutação , Síndrome Nefrótica/genética , Síndrome , Peixe-Zebra , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
Indian J Pediatr ; 83(8): 805-13, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26830282

RESUMO

OBJECTIVE: To describe the spectrum, relative prevalence and molecular background of lysosomal storage disorders in Egypt. METHODS: The authors evaluated the selective screening program for the diagnosis of lysosomal storage disorders in Egyptian children presenting to the inherited metabolic disease unit at Cairo University Children's Hospital, the largest tertiary care pediatric hospital in Egypt, over a six-year period (April 2008 through April 2014). During this period, 1,065 suspected children were assessed clinically, biochemically and some genetically. RESULTS: Two hundred and eleven children (aged 44 ± 32 mo; 56 % boys, 82 % with consanguineous parents) were confirmed with 21 different lysosomal disorders. The diagnostic gap ranged between 2 mo and 14 y (average 25 mo). Mucopolysaccharidoses were the most common group of diseases diagnosed (44.5 %), while Maroteaux-Lamy, Gaucher and nephropathic cystinosis were the most commonly detected syndromes (17.1, 14.7 and 13.7 %, respectively). Eighty mutant alleles and 17 pathogenic mutations were detected in 48 genetically assessed confirmed patients (30 Gaucher, 16 cystinosis and two Niemann-Pick type C patients). CONCLUSIONS: This report is the first to describe relative frequency and spectrum of clinical and molecular data in a large cohort of Egyptian lysosomal patients. The crude estimate denotes that over 80 % of Egyptian lysosomal patients do not have access to optimal diagnosis. Upgrading diagnostic and genetic services for lysosomal storage disorders in Egypt is absolutely necessary.


Assuntos
Doenças por Armazenamento dos Lisossomos , Criança , Pré-Escolar , Estudos de Coortes , Consanguinidade , Egito/epidemiologia , Feminino , Humanos , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/genética , Masculino , Prevalência
18.
Kidney Int ; 89(2): 468-475, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26489029

RESUMO

Chronically increased echogenicity on renal ultrasound is a sensitive early finding of chronic kidney disease that can be detected before manifestation of other symptoms. Increased echogenicity, however, is not specific for a certain etiology of chronic kidney disease. Here, we performed whole exome sequencing in 79 consanguineous or familial cases of suspected nephronophthisis in order to determine the underlying molecular disease cause. In 50 cases, there was a causative mutation in a known monogenic disease gene. In 32 of these cases whole exome sequencing confirmed the diagnosis of a nephronophthisis-related ciliopathy. In 8 cases it revealed the diagnosis of a renal tubulopathy. The remaining 10 cases were identified as Alport syndrome (4), autosomal-recessive polycystic kidney disease (2), congenital anomalies of the kidney and urinary tract (3), and APECED syndrome (1). In 5 families, in whom mutations in known monogenic genes were excluded, we applied homozygosity mapping for variant filtering and identified 5 novel candidate genes (RBM48, FAM186B, PIAS1, INCENP, and RCOR1) for renal ciliopathies. Thus, whole exome sequencing allows the detection of the causative mutation in 2/3 of affected individuals, thereby presenting the etiologic diagnosis, and allows identification of novel candidate genes.


Assuntos
Insuficiência Renal Crônica/genética , Idade de Início , Estudos de Coortes , Análise Mutacional de DNA , Exoma , Humanos , Doenças Renais Císticas/congênito , Doenças Renais Císticas/genética , Insuficiência Renal Crônica/diagnóstico por imagem
19.
J Med Genet ; 53(3): 208-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26673778

RESUMO

BACKGROUND: The term nephronophthisis-related ciliopathies (NPHP-RC) describes a group of rare autosomal-recessive cystic kidney diseases, characterised by broad genetic and clinical heterogeneity. NPHP-RC is frequently associated with extrarenal manifestations and accounts for the majority of genetically caused chronic kidney disease (CKD) during childhood and adolescence. Generation of a molecular diagnosis has been impaired by this broad genetic heterogeneity. However, recently developed high-throughput exon sequencing techniques represent powerful and efficient tools to screen large cohorts for dozens of causative genes. METHODS: Therefore, we performed massively multiplexed targeted sequencing using the modified molecular inversion probe strategy (MIPs) in an international cohort of 384 patients diagnosed with NPHP-RC. RESULTS: As a result, we established the molecular diagnoses in 81/384 unrelated individuals (21.1%). We detected 127 likely disease-causing mutations in 18 of 34 evaluated NPHP-RC genes, 22 of which were novel. We further compared a subgroup of current findings to the results of a previous study in which we used an array-based microfluidic PCR technology in the same cohort. While 78 likely disease-causing mutations were previously detected by the array-based microfluidic PCR, the MIPs approach identified 94 likely pathogenic mutations. Compared with the previous approach, MIPs redetected 66 out of 78 variants and 28 previously unidentified variants, for a total of 94 variants. CONCLUSIONS: In summary, we demonstrate that the modified MIPs technology is a useful approach to screen large cohorts for a multitude of established NPHP genes in order to identify the underlying molecular cause. Combined application of two independent library preparation and sequencing techniques, however, may still be indicated for Mendelian diseases with extensive genetic heterogeneity in order to further increase diagnostic sensitivity.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Renais Císticas/genética , Técnicas de Diagnóstico Molecular , Heterogeneidade Genética , Humanos , Sensibilidade e Especificidade
20.
Hum Genet ; 134(8): 905-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026792

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans.


Assuntos
Proteínas Ativadoras de GTPase , Peptídeos e Proteínas de Sinalização Intercelular , Mutação , Proteínas do Tecido Nervoso , Receptores Imunológicos , Transdução de Sinais/genética , Anormalidades Urogenitais , Refluxo Vesicoureteral , Animais , Exoma , Proteínas Ativadoras de GTPase/biossíntese , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/metabolismo , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Ratos , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Fatores de Risco , Anormalidades Urogenitais/embriologia , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/embriologia , Refluxo Vesicoureteral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA